La Unión Soviéticamantiene un activo programa de exploración planetario con naves no tripuladas. Cada uno o dos años las posiciones relativas de los planetas y la física de Kepier y de Newton permiten el lanzamiento de una nave espacial a Marte o a Venus, con un mínimo gasto de energía. Desde principios de los sesenta la URSS ha perdido muy pocas de estas oportunidades. La insistencia soviética y los logros de su ingeniería han acabado dando generosos resultados. Cinco naves espaciales soviéticas Venera 8 a 12 han aterrizado en Venus y han conseguido enviar datos desde su superficie, una azaña no despreciable en una atmósfera planetario tan caliente, densa y corrosiva. Sin embargo, y a pesar de muchas tentativas, la Unión Soviética no ha conseguido aterrizar en Marte; un lugar que, al menos a primera vista, parece más acogedor, con temperaturas frías, una atmósfera mucho más ligera y gases más benignos; con casquetes polares de hielo, claros cielos rosados, grandes dunas de arena, antiguos lechos de ríos, un vasto valle de dislocación; lava hermosa,Y volcánica, al menos conocida por nosotros, del sistema solar, y suaves atardeceres de verano en el ecuador. Es un mundo mucho más parecido a la Tierra que Venus.
En 1971, la nave soviética Mars 3 penetró en la atmósfera marciana. Según la información transmitida por radio automáticamente, la nave desplegó con éxito sus sistemas de aterrizaje durante la entrada, orientó correctamente hacia abajo su escudo de ablación, desplegó completamente su gran paracaídas y encendió sus retrocohetes cerca del final de su camino de descenso. Según los datos enviados por el Mars 3, debió de haber aterrizado con éxito en el planeta rojo. Pero la nave espacial, después de aterrizar, envió a la Tierra un fragmento de veinte segundos de una imagen televisiva en blanco, y luego falló misteriosamente. En 1973 tuvo lugar una serie de sucesos muy similares con el vehículo de aterrizaje del Mars 6. En ese caso el fallo ocurrió un segundo después de aterrizar. ¿Qué falló?
La primera ilustración que pude ver del Mars 3 fue un sello soviético (valor, 16 kopecs), en el que aparecía dibujada la nave espacial descendiendo a través de una humareda purpúrea. Pienso que el artista intentaba ilustrar polvo y vientos intensos: Mars 3 entró en la atmósfera durante una enorme tormenta de arena de ámbito global. Tenemos pruebas procedentes de la misión americana Mariner 9 de que en aquella tormenta hubo vientos, cerca de la superficie, de más de 140 metros por segundo: velocidad superior a la mitad de la del sonido en Marte. Tanto nuestros colegas soviéticos como nosotros consideramos probable que esos vientos intensos pillaran a la nave espacial Mars 3 con el paracaídas desplegado, de modo que aterrizó suavemente en dirección vertical pero con una velocidad desbocada en la dirección horizontal. Una nave espacial que desciende colgada de los tirantes de un gran paracaídas es particularmente vulnerable a los vientos horizontales. Es posible que, después de aterrizar, el Mars 3 diera unos cuantos botes, golpeara una roca u otra muestra cualquiera del relieve marciano, volcara, perdiera el contacto por radio con el bus que lo había transportado y fallara.
Pero, ¿por qué entró el Mars 3 en medio de una gran tormenta de arena? La misión del Mars 3 fue organizada rígidamente antes de despegar. Cada paso que tenía que dar se registró, antes de partir de la Tierra, en la computadora de a bordo. No había manera de cambiar el programa de la computadora, aún después de darse cuenta de la magnitud de la gran tormenta de arena de 197 1. Puede decirse en la jerga de la exploración espacial, que la misión del Mars 3 era preprogramada, no adaptativa. El fallo del Mars 6 es más misterioso. No había tormenta de ámbito planetario cuando esta nave espacial entró en la atmósfera marciana, y no hay razón alguna para sospechar la existencia de una tormenta local, como a veces ocurre, en el punto de aterrizaje. Quizás se produjo un fallo de ingeniería en el momento justo de tocar la superficie. 0 quizás hay algo especialmente peligroso en relación con la superficie de Marte.
La combinación de éxitos soviéticos en los aterrizajes de Venus y de fallos soviéticos en los aterrizases de Marte, nos causó, como es lógico, una cierta preocupación al preparar la misión norteamericana Viking, que había sido fechada de modo informal, para que depositara suavemente una de sus dos naves sobre la superficie de Marte, coincidiendo con el bicentenario de los EE. UU., el 4 de julio de 1976. La maniobra de aterrizaje del Viking comprendía, como la de sus predecesores soviéticos, un escudo de ablación, un paracaídas y retrocohetes. La atmósfera marciana tiene una densidad de sólo un l% de la atmósfera terrestre, y por ello se desplegó un paracaídas muy grande, de dieciocho metros de diámetro, para frenar la nave espacial cuando entrara en el aire enrarecido de Marte. La atmósfera es tan poco densa que si el Viking hubiera aterrizado a gran altura no hubiera habido atmósfera suficiente para frenar adecuadamente su descenso y se hubiera estrellado. Por lo tanto una de las condiciones era que el punto de aterrizaje estuviera en una región baja. Los resultados enviados por el Mariner 9 y los estudios de radar desde la Tierra nos habían hecho conocer muchas zonas de este tipo.
A fin de evitar el destino probable de Mars 3, quisimos que el Viking aterrizara en un lugar y en un momento de vientos débiles. Los vientos que harían estrellarse al vehículo de aterrizaje tendrían probablemente fuerza suficiente para alzar polvo de la superficie. Si pudiésemos controlar que el lugar de aterrizaje propuesto no estaba cubierto con arena flotante y movediza, tendríamos por lo menos una cierta garantía de que los vientos no eran intolerablemente intensos. Esta fue una de las razones para trasladar cada vehículo de aterrizaje Viking con su vehículo orbital hasta la órbita de Marte, y allí retrasar el descenso hasta que el vehículo orbital hubo estudiado el lugar de aterrizaje. Habíamos descubierto con el Mariner 9 que en épocas de vientos intensos se producen cambios característicos en los rasgos brillantes y oscuros de la superficie marciana. Si las fotografías orbitales de un determinado punto de aterrizaje para el Viking hubieran mostrado tales estructuras movedizas, desde luego no lo habríamos considerado seguro. Pero nuestras garantías no podían ofrecer una seguridad del cien por cien. Podríamos imaginar, por ejemplo, un punto de aterrizaje donde los vientos fueran tan fuertes que se hubiesen llevado ya todo el polvo móvil. Entonces careceríamos de pistas sobre la posible presencia de vientos intensos en aquel punto. Las predicciones meteorológicas detalladas sobre Marte eran por supuesto mucho menos seguras que las de la Tierra. Uno de los muchos objetivos de la misión Viking era precisamente proporcionar información sobre la meteorología de ambos planetas.
A causa de las limitaciones impuestas por las comunicaciones y por la temperatura, el Viking no podía aterrizar en latitudes marcianas elevadas. A distancias hacia el polo superiores a unos 45 o 5Oo en ambos hemisferios, hubieran sido inoportunamente cortos tanto el útil de comunicación de la nave espacial con la Tierra como el tiempo durante el cual la nave espacial evitaría unas temperaturas peligrosamente bajas.
No deseábamos aterrizar en un lugar demasiado accidentado. La nave espacial podía volcar o estrellarse, o si no el brazo mecánico, al intentar obtener muestras del suelo marciano, podía quedar agarrotado o colgando y moviéndose inútilmente a un metro de la superficie. Tampoco queríamos aterrizar en lugares que estuvieran demasiado blandos. Si los tres pies de aterrizaje de la nave espacial se hubieran hundido profundamente en un suelo poco consistente, se habrían producido varias consecuencias indeseables, incluyendo la inmovilización del brazo de muestreo. Pero tampoco queríamos aterrizar en un lugar demasiado duro; si hubiésemos aterrizado en un campo de lava vítrea, por ejemplo, sin rastro de materia polvorienta en la superficie, el brazo mecánico no hubiese podido obtener las muestras vitales para los experimentos químicos _y biológicos previstos.