Обратите внимание на 1-ю группу — слова в ней подобраны на удивление точно и с явным эффектом «понимания» их смысла. То же самое наблюдается во 2-й и 5-й группах. Особенно тесна смысловая связь между словами 5-й, «философской», группы: это буквально набор контекстуальных синонимов, которые вполне могут встретиться как лексические варианты в конкретном тексте.
Три уровня качественной классификации — это, конечно, очень мало для практической работы компьютера с полученными группами, но возможности такой работы просматриваются уже и здесь. Скажем, на вопрос, чем является для науки философия, компьютер «самостоятельно» мог бы ответить, что это база, основа, основание науки. В своем ответе компьютер учел все три аспекта семантики — понятийный, поскольку слова взяты из одной понятийной группы, качественно-признаковый, поскольку синонимы подыскивались в группе слов с общими качественными ореолами, и, наконец, фоносемантический, так как из группы выбраны слова с индексом С — наиболее точные и выразительные.
А если спросить компьютер, какое понятие он может противопоставить социализму, он ответит: «Социализм и царь противостоят друг другу как совершенно несовместимые понятия». В этом случае компьютер «рассуждал» так: слово социализм находится в группе, образовавшейся на выходе «хорошее и сильное», этому выходу противопоставлен тот, который собрал «плохие и сильные» слова, а это выход 7, где помещено слово царь; значит, социализм и царь в данном случае оценочно противопоставлены.
Ясно, что при работе с большими массивами слов и с использованием многоуровневых классификаторов семантические имитационные возможности компьютера резко возрастут.
Что же необходимо для того, чтобы уже сейчас пустить в работу описанную здесь систему комплексного анализа лексической семантики?
Прежде всего нужно развить и усовершенствовать «понятийный классификатор», то есть как бы в развитие программной основы «Русского семантического словаря» разработать специальную автоматизированную систему семантического анализа, ориентированную на работу с понятийной семантикой. Но, как уже говорилось, проблем на этом сложном пути еще много.
Кроме того, необходим, остро необходим словарь русских качественных ореолов. Лучше всего было бы издать общий словарь русской ореольной семантики, но его фоносемантическая часть готова, тогда как качественно-ореольной нет и в ближайшее время не ожидается. А без учета качественно-признаковых ореолов невозможно построить систему полноценного семантического анализа.
Как же быть? Неужели положение так безвыходно?
Думается, что выход, по крайней мере, как временное решение проблемы, есть. Можно использовать удивительно рациональное устройство языковой семантики, когда семантические аспекты своим взаимопроникновением поддерживают друг друга. Как уже отмечалось, фоносемантический ореол слова часто соответствует качественному, иногда настолько полно, что набор фоносемантических признаков буквально повторяет набор признаков, характеризующих качественный ореол. В таких случаях, открывается возможность, которой неосмотрительно было бы не воспользоваться: результаты компьютерного расчета фоносемантики слова можно одновременно считать результатами измерения его качественного ореола.
Например, для фоносемантики слова мимоза компьютер получил характеристики: «нежное, женственное, гладкое, безопасное, доброе, медлительное». Есть ли смысл опрашивать информантов, чтобы получить средние оценки качественного ореола этого слова по шкалам «нежное — грубое», «женственное — мужественное», «безопасное — страшное», «доброе — злое»? Напрасный труд — ясно, что и для качественного ореола по этим шкалам будут получены те же характеристики, что и для фоносемантического.
Легко использовать этот прием и в тех случаях, когда между ореолами наблюдаются резкие противоречия: результаты фоносемантических расчетов компьютер перенесет на качественный ореол «с обратным знаком», то есть возьмет признаки, противоположные (антонимичные) полученным для фоносемантики. Так, если для содержательности звучания слова фиалка получены признаки «плохое, темное, устрашающее, отталкивающее», то для качественного ореола компьютер возьмет антонимичные признаки: «хорошее, светлое, безопасное, красивое».
Для реализации идеи потребуется немалый труд. Нужно просмотреть все характеристики всех слов фоносемантического словаря и снабдить слова индексами, как мы уже делали. Если признаки можно прямо переносить на качественный ореол, слово помечается индексом С (соответствия), если нужно «менять знаки» признаков, слово маркируется индексом П (противоречие). В случае нейтральных отношений между ореолами такие слова не маркируются. Затем слова с маркировкой вводятся в память компьютера.