Выбрать главу

"Геометрия этого вложения, очевидно, не евклидова." Ятима набросал несколько треугольников на поверхности у их ног. " Сумма углов треугольника зависит от того где вы поместили его: более, чем 180 градусов здесь, около внешнего обода, но менее чем 180 около внутреннего обода. На половине расстояния, достигается баланс."

Радия кивнул. "Хорошо. Итак, как же вы сбалансируете сумму везде без изменения топологии?"

Ятима изменил пространство вокруг объекта и сам объект. Пространство на горизонте на востоке и западе начало сжиматься, а синие линии широты начали выпрямляться. На юге у узкой области кривизна быстро выросла. "Если вы изгибаете цилиндр в тор, то линии параллельные оси цилиндра растянутся в круги разного размера, вот где кривизна действительно проявляется. И если бы вы попытались сохранить все круги, так чтоб они были одинакового размера, невозможно было бы никоим образом удержать их друг от друга. Но это верно только в трех измерениях".

Линии сетки были полностью прямыми теперь, перспектива везде вполне линейная. Им казалось что он стоит на безграничной плоскости, и только повторяющиеся образы их аватар свидетельствовали об ином. Треугольники также выпрямились; Ятима сделал две идентичных копии одного из них, затем добавил третий и соединил их в виде лопасти вентилятора, которые показывали сумму углов до 180 градусов. "Топологически, ничего не изменилось, я не менял ничего не прикладывал и не присоединял к поверхности. Разница лишь в том, что…"

Он прыгнул назад на лесную поляну. Тор оказался превращенным в короткую цилиндрическую полосу; большие синие круги широты были все теперь равного размера — но меньшие красные круги, меридианы, выглядели так будто они были выровнены в прямые линии. "Я повернул каждые 90 градусов меридиана, в четвертое пространственное измерение. Они только выглядят плоскими поскольку мы видим их с ребра." Ятима повторил трюк с аналогом более низкого измерения: взяв полосу между парой концентрических кругов и скручивая ее на 90 градусов от плоскости, поставил ее на ребро; дополнительное измерение создавало место для всей полосы целиком, чтобы иметь однородный радиус. С тором было почти так же; каждый круг широты мог иметь тот же радиус до тех пор, пока они не получили другие "высоты" в четвертом измерении, чтобы держать их раздельно. Ятима изменил цвет всего тора в плавно изменяющиеся оттенки зеленого, чтобы показать скрытую четвертую координату. Внутренняя и внешняя поверхности "цилиндра" только соответствовали цветами верхним и нижним ободьям, — здесь они сошлись в четвертом измерении; в другом месте, другие оттенки с той или другой стороны показывали, что они остались разделенными.

Радия сказал: "Очень хорошо. Теперь можешь делать то же со сферой?"

Ятима скривился от досады. "Я пробовал! Интуитивно это кажется просто невозможным… но я бы сказал то же самое о торе, прежде чем нашел правильное решение. Он создал сферу, как и говорил, и деформировал ее в куб. Ничего хорошего однако не получилось — сфера просто свела всю свою кривизну в своеобразие углов, и все.

"Хорошо". Вот подсказка". Радия трансформировал куб обратно в сферу, и нарисовал три больших круга на ее черноте: по экватору, и два полных меридиана, отстоящих на 90 градусов друг от друга.

"Что же я разделил на поверхности?"

"Треугольники. Прямоугольные треугольники". Четыре в северном полушарии, 4 на южном.

"И все, что вы делаете с поверхностью — изгибаете, протягиваете, скручиваете ее в тысяче других измерениях — всегда ли вы будете способны разделить ее одним тем же способом, или нет? Восемью треугольниками, заключенными между шестью точками?"

Ятима экспериментировал, последовательно деформируя сферы в различные формы. "Я думаю, вы правы. Но как это поможет?"

Радия промолчал. Ятима сделал объект прозрачным, так что бы он мог видеть все треугольники сразу. Они сформировали вид грубой сетки, шестиконечной сети, закрытой авоськи из веревок. Он выпрямил все двенадцать линий, в которые несомненно выравнивались треугольники — но это превратило сферу в алмаз в форме октаэдра, что было также плохо как куб. Каждая плоскость алмаза была вполне эвклидовой, но шесть острых точек были похожи на бесконечно сконцентрированные хранилища кривизны