Впоследствии удалось получить ряд так называемых трансурановых элементов, занимающих следующие после урана клетки периодической системы Менделеева. За нептунием (Z=93) и плутонием (Z=94) идет америций (Z=95), кюрий (Z=96), беркелий (Z=97), калифорний (Z=98), эйнштейний (Z=99), фермий (Z=100), менделевий (Z=101), нобилий (Z=102). Названия элементов 96, 99, 100 и 101 напоминают о естествоиспытателях, проложивших путь к открытию трансурановых элементов и в целом к новой эпохе в развитии представлений об элементах, атомах и атомных ядрах. Мировая наука запечатлела в названиях элементов имена Кюри, Эйнштейна, Ферми и Менделеева. Имя супругов Кюри связано с открытием радия и началом систематического изучения ядерных реакций, объяснивших связь между различными элементами, установленную еще в 60-е годы прошлого века открытием периодического закона. Эйнштейн показал связь энергии с массой вещества и этим далеко продвинул вперед изучение энергии атомного ядра. Ферми внес очень большой вклад в представления о воздействии нейтронной бомбардировки на атомные ядра и в разработку представлений о ядрах атомов. Имя Менделеева, запечатленное в названии 101 элемента, периодической системы, напоминает о великом научном подвиге русского ученого, указавшего на связь между элементами как на универсальный закон природы. Расшифровывая эту связь, наука поднялась на новую ступень, пришла к представлению об элементарных частицах, к новой картине строения атомных ядер, атомов и молекул, к новой картине строения вещества в целом.
Новая ступень в развитии науки неразрывно связана с новой техникой, использованием новых источников энергии, перестройкой на этой основе технологии всех отраслей промышленности, созданием новой техники транспорта и новых условий быта. Речь идет об атомной энергии и ее промышленном применении.
В конце 1942 года Ферми и его ученики и сотрудники построили новую установку, в которой происходило деление атомных ядер урана. Такая установка получила название атомного реактора, или «атомного котла». В таком реакторе находятся урановые стержни, и с течением времени из урана образуется плутоний. Урановые стержни через некоторое время вынимают из котла, отправляют в химические цехи, где плутоний отделяют от урана различными химическими операциями. Уран направляется снова в атомный котел, а плутоний хранится на складах небольшими кусками. Почему эти куски должны быть небольшими? Здесь мы подходим к чрезвычайно важному обстоятельству. Когда начинается цепная реакция, то появившиеся вторичные нейтроны до того, как они сталкиваются с атомными ядрами, проходят в среднем сравнительно большое расстояние — около 10 см. Если кусок урана 235 или плутония невелик, то большая часть нейтронов вылетает наружу и не поддерживает цепную реакцию. Но если масса куска урана равна или больше так называемой критической массы, то значительная часть нейтронов не достигает поверхности куска, попадает в ядра урана, вызывает деление этих ядер, и дело принимаем иной оборот. С каждым новым делением нейтронов становится все больше, реакция ускоряется после каждого нового деления, число свободных нейтронов растет в прогрессии 2, 4, 8, 16, 32, 64, 128, 256 и т. д., т. е. чрезвычайно быстро. В течение миллионной доли секунды произойдет примерно сто последовательных делений, т. е. за этот срок большая часть ядер урана разделится, или, проще говоря, этот кусок урана взорвется. Если быстро соединить два куска урана, не достигающих критической массы, в один кусок, превышающий критическую массу, то произойдет атомный взрыв.
При взрыве освобожденная энергия резко повышает температуру среды, окружающую точку, в которой произошел взрыв. В центре огненного шара эта температура достигает на короткое время миллионов градусов. Огненный шар быстро увеличивается и, остывая, превращается в клубящееся облако, которое поднимается на высоту 10–15 км и постепенно рассеивается. Атомный взрыв сопровождается одновременным действием мощной ударной волны, светового излучения, проникающей радиации, а также радиоактивным заражением воздуха и местности.
Атомные бомбы, сброшенные в 1945 году на японские города Хиросима и Нагасаки, были причиной гибели сотен тысяч мирных жителей. Народы всего мира ведут непрерывную борьбу за запрещение атомного оружия, за мирное применение энергии ядер.
Наряду с распадом атомных ядер тяжелых элементов, например урана, существует другой способ получения атомной энергии, основанный уже не на распаде, а на соединении легких ядер в более тяжелые. Из тяжелых элементов, находящихся в самом конце периодической таблицы Менделеева — урана, плутония и т. д., энергия выделяется при распаде ядер, а у легких элементов, стоящих в начале менделеевской периодической системы, энергия выделяется при образовании более тяжелых ядер из легких. Подобные реакции называются термоядерными. Примером их служит образование ядра гелия из ядер водорода. Такая реакция используется в водородной бомбе. Водородная бомба — еще более разрушительное оружие, чем атомная бомба из урана или плутония.