Выбрать главу

Но и сами студенты занимались проблемами, теми же датчиками инфракрасного излучения — а больше оказалось и некому.

В общем, студенты как следует прошерстили библиотеки и из литературы нам стало понятно, что сейчас для использования в ИК-технике выращивают пленки разных сульфидов, причем — поликристаллические, состоящие из мелких кристалликов. Ну я-то, как "самый вумный", сразу стал продвигать монокристаллы. Монокристаллы не заработали — слишком малое в них было время жизни носителей, то есть время релаксации фотопроводимости слишком мало — из-за облучения возникают основные носители — дырки, и в монокристаллах их рекомбинация происходит слишком быстро, а ведь фоточувствительность напрямую зависит от времени сохранения изменения проводимости от облучения — возникшие от попадания фотонов носители должны успеть добежать до электродов, чтобы внешняя цепь ощутила изменение проводимости детектора. Если же возникшие свободные носители быстренько рекомбинируют, то никаких изменений для внешней цепи ожидать не приходится — они просто не успевают пробежать через толщу детектора. Но все эти тонкости мы узнали позднее, через полтора года. А вначале, зимой сорок первого, работали "как все" — выращиванием поликристаллических пленок. Это я, памятуя о широком применении монокристаллов в микроэлектронике, все подталкивал народ выращивать их и для ИК-детекторов. Да, в конце концов вырастили мне эти монокристаллы. Ничего. Как их ни активировали — не работало. И, так как к этому времени уже вовсю производились и использовались элементы на поликристаллических пленках, монокристаллы пока отложили в сторону.

Но с поликристаллическими пленками тоже все было непросто. Так, начиная с марта сорок второго, в своих исследованиях мы исходили из того, что для увеличения обнаружительной чувствительности надо было увеличивать время жизни основных носителей. То есть делать кристаллы как можно меньше, чтобы наличие многих границ между кристаллами препятствовало рекомбинации носителей — так они могут двигаться только внутри одного кристалла и по межкристальным контактам, которых заведомо немного — кристаллы ведь разной формы и прилегают друг к другу не впритык, а с зазорами, касаясь друг друга небольшими участками. От этого снижается вероятность рекомбинации по сравнению с монолитным кристаллом, в котором для перемещений доступны все направления. Но увеличенное время жизни соответственно снижало частотные характеристики приборов — ведь чем дольше живут носители, возникшие от предыдущей точки, тем дольше они будут мешать получению информации от новой точки — информация становится неактуальной, тепловое пятно "смазывается", а то и совсем заплывает — детектор надолго "запоминает" максимальное значение потока фотонов и на более слабые излучения просто не реагирует — носителей и так избыток, чтобы отреагировать еще на какие-то хлипкие фотонишки.

Поэтому для теплопеленгаторов с одним элементом мы старались использовать поликристаллические пленки с мелкими кристаллами — таким приборам было важно обнаружить тепло от малоподвижного источника — солдата, орудия, танка. Они применялись наземной разведкой, где обзор шел по горизонтали, соответственно, телесный угол, который надо было просматривать наблюдателю, был сравнительно небольшим, скорости передвижения целей — тоже, потому можно подержать индикатор подольше на одном месте, чтобы он "забыл" излучение предыдущего места. Главное — не обременять наблюдателя излишком техники, иначе он не сможет смыться из-под обстрела, если его засекут.

А вот для воздушной разведки требовались быстродействующие приборы, поэтому там использовались фоточувствительные элементы с крупными кристаллами — пониженная способность к обнаружению давала вместе с тем хорошие частотные характеристики, то есть возможность делать развертку телевизионного сигнала, чтобы выполнить площадной обзор, а степень обнаружения повышалась применением нескольких элементов для одной и той же точки, ну и увеличенными размерами самих элементов — для воздушной разведки излишек техники был не так уж критичен, поэтому им можно было компенсировать недостатки чувствительных элементов. Позднее мы нащупали еще зависимость от толщины фоточувствительного слоя — чем он был тоньше, тем выше была обнаружительная способность — что-то там было связано с соотношением длины волны излучения и толщины слоя элемента — если слой был тоньше, то эффективность возрастала. Но в сорок втором это были еще только предположения, выведенные на основе наблюдений за работой приборов.