Выбрать главу

Особый интерес представляют случаи, когда различия геномов оказываются нейтральными, то есть не влияют на организм. Например, было рассчитано, что цитохром c может быть составлен как минимум 2.3 * 1093 разными способами за счет того, что одинаковую по функции и биологически значимым свойствам молекулу белка можно получить с помощью разных последовательностей аминокислот. В свою очередь, каждая из этих последовательностей может быть закодирована 1046 различными последовательностями ДНК вследствие избыточности генетического кода (разные тройки нуклеотидов кодируют одну и ту же аминокислоту). Нет никаких априорных причин, кроме происхождения от общего предка, по которым два разных вида должны были бы иметь хотя бы отдаленно похожие последовательности ДНК для кодирования нормально работающего (функционального) цитохрома c. То же самое справедливо и для других белков. Тем не менее аминокислотные последовательности большинства белков у близкородственных видов (например, у шимпанзе и человека), как правило, очень похожи. Так, подавляющее большинство гомологичных белков человека и шимпанзе различаются лишь на 1–2 аминокислоты или не различаются вовсе. Различий в нуклеотидных последовательностях обычно больше за счет незначимых, или синонимичных (не влияющих на аминокислотную последовательность белка) нуклеотидных замен.

По соотношению несинонимичных и синонимичных нулеотидных замен (dN/dS) можно определить, насколько сильно действует на данный ген «очищающий» отбор, отбраковывающий мутации, которые меняют свойства белка. Как правило, чем консервативнее (постояннее) функция белка, тем ниже этот показатель. Повышение dN/dS свидетельствует о положительном отборе, т. е. о закреплении полезных мутаций. Например, повышенное значение dN/dS у человека по сравнению с другими млекопитающими зафиксировано в гене FOXP2, который связан со способностью к произнесению членораздельных звуков (см.: Будут ли расшифрованы генетические основы разума?; «Ген речи» FOXP2 оказался регулятором высокого уровня).

Малое число различий в аминокислотных последовательностях белков у близких видов связано не только с тем, что эти различия еще не успели накопиться, но и с тем, что многие одинаково удачные для выполнения данной функции аминокислотные последовательности (см. выше) отделены друг от друга так называемыми «ямами в ландшафте приспособленности». Это значит, что для того, чтобы перейти от одной такой последовательности к другой, функционально равнозначной, нужно приобрести сразу несколько мутаций, каждая из которых по отдельности может снижать функциональность белка. Многие из этих «ям» можно обойти, последовательно приобретая ряд нейтральных мутаций, но это долгий процесс, основанный на случайностях, а не на позитивном отборе, и поэтому он занимает много времени (см.: The Molecular Sequence Evidence из архива TalkOrigins.org.)

Пример сравнения нуклеотидных и аминокислотных последовательностей человека и шимпанзе

Сравнительный анализ нуклеотидных последовательностей позволяет судить о степени родства сравниваемых организмов. Это обстоятельство широко применяется на практике (в частности, для установления отцовства). Например, недавно на основе анализа ДНК из человеческих костей, обнаруженных под Екатеринбургом, удалось доказать, что это останки семьи последнего российского императора Николая II. При этом для сравнения был использован генетический материал ныне живущих родственников царской семьи (см.: Генетический анализ показал, что из детей Николая II не спасся никто).

Изучая семьи с известной генеалогией, генетики оценивают скорость накопления различий в ДНК. В частности, большую помощь оказало исследование ДНК населения Исландии — уникальной страны, где каждый житель знает всех своих предков вплоть то первых колонистов, прибывших в Исландию из Норвегии в IX веке (причем из останков нескольких первопоселенцев тоже удалось извлечь ДНК для анализа). Теми же методами можно реконструировать историю целых народов или, к примеру, находить среди современных азиатов потомков Чингисхана. Результаты генетического анализа при этом хорошо согласуются с сохранившимися историческими сведениями. В ходе многочисленных исследований такого рода, где можно было непосредственно сравнить генетические данные с историческими, генетики раз за разом убеждались в достоверности оценок родства на основе сравнения ДНК, а используемые методы развивались и совершенствовались.