Образуются такие радионуклиды (как правило, тяжелые) путем нейтронного захвата на последней стадии эволюции звезд — при т. н. взрывах сверхновых. В противоположность интуитивным понятиям, историческим термином «взрыв сверхновой» обозначают не начало, а конец эволюции звезды. После выгорания водорода и гелия звезда «сбрасывает» свою атмосферу, при этом наблюдатель с Земли видит вспышку от светящегося газа, превосходящую по яркости звезду до взрыва (как будто «новую звезду не небе»).
Эти радионуклиды (в основном изотопы тяжелых элементов — урана и тория, а также калий-40) вносят существенный вклад в тепловой баланс земных недр (вспомним, что слишком быстрое их остывание составляло в XIX веке проблему для Кельвина; другой важный, но тоже не учтенный Кельвином источник — гравитационная дифференциация вещества в мантии и ядре Земли).
Изотопами элемента Z называются нуклиды, имеющие одинаковое число (Z) протонов, но разное число нейтронов. Таким образом, изотопы различаются атомной массой, например, стабильный углерод-12 и радиоактивный углерод-14, или уран-235 и уран-238, важные для радионуклидного датирования.
Помимо этого, радионуклиды предоставили геологам практически единственный способ судить об абсолютном возрасте пород и абсолютной продолжительности геологических эпох, «проставить даты на палеонтологической летописи». Из-за того, что период полураспада является внутренним свойством спонтанного перехода между состояниями ядра, на него не влияют внешние по отношению к ядру условия, как-то температура, давление, химическое соединение и агрегатное состояние вещества, в которое входят радионуклиды и т. д.
Существенной, а в большинстве случаев главной, проблемой на заре ядерной геохронологии была неизвестность начального содержания, а также выноса и привноса в последующее время материнского и дочернего нуклидов, что делало какие-либо оценки возраста пород крайне затруднительными. В каких-то случаях выручить может то, что дочерний нуклид, как при превращении калия-40 в аргон-40, является газом, который покидает расплав породы при извержении лавы. Однако методы, предполагающие отсутствие дочернего нуклида на момент образования породы, не вполне надежны, особенно для недавно извергшихся пород, так как даже небольшие добавочные количества дочернего нуклида могут привести к огромной погрешности в результате.
К наиболее надежным методам датировок, не только не требующим отсутствия дочернего нуклида, но и имеющим «внутреннюю защиту от ошибок», относятся так называемые методы изохрон. Эти методы основаны на анализе содержания трех нуклидов — материнского радионуклида (M), дочернего радиогенного нуклида (D1), а также другого, нерадиогенного (D2), изотопа того же элемента, что и дочерний нуклид D1 — в разных образцах породы, отличающихся по содержанию материнского нуклида М. На момент кристаллизации расплава породы разные ее образцы могут отличаться по химическому (элементному) составу, однако изотопный состав каждого из элементов будет одинаков для разных образцов (ибо химические свойства элемента мало зависят от изотопа данного элемента). Поэтому изохрона — линия, выражающая зависимость отношения концентраций [D1]/ [D2] от [M]/ [D2] — будет в этот момент прямой, параллельной оси абсцисс (см. рис. 1, круги). По мере превращения нуклида M в нуклид D2 изохрона будет продолжать оставаться прямой (чем больше ядер M содержал образец в начальный момент, тем больше в нем будет накапливаться ядер D1 со временем); и угол ее наклона будет показывать нам возраст породы (рис. 1, треугольники и квадраты). Если же с течением времени будет иметь место вынос или привнос какого-либо из нуклидов (M, D1 или же D2), то изохрона перестает быть прямой линией! Таким образом, метод изохрон обладает «встроенной защитой», которая показывает, «исправны» радионуклидные часы или же они «барахлят».