Выбрать главу

Большая европейская стройка

В последние годы глобальное первенство в сфере планирования и создания новых меганаучных установок и научно-исследовательской инфраструктуры у былого безоговорочного лидера, Соединенных Штатов, постепенно перехватывает «старая» Европа. Так, в текущей версии дорожной карты Европейского стратегического форума по исследовательским инфраструктурам (ESFRI), ведущего органа ЕС, осуществляющего предварительный отбор и последующую координацию проектов категории megascience, к настоящему времени представлено порядка 50 крупномасштабных панъевропейских проектов и программ, находящихся на различных стадиях разработки и практической реализации.

Не у всех из них судьба безоблачна. В частности, нобелевский лауреат американский физик Стивен Вайнберг предполагает, что руководящие органы Еврокомиссии могут в скором времени сократить представленный в последней версии дорожной карты ESFRI обширный список новых исследовательских инсталляций. Однако пока серьезных поводов для беспокойства ученого сообщества на сей счет нет — практически все заявленные проекты пусть и медленно, но развиваются.

Пожалуй, наиболее болезненной темой в научных кругах до сих пор остается оценка перспектив успешного завершения самой долгоиграющей меганаучной стройки в современной истории человечества — первого в мире экспериментального термоядерного реактора ИТЭР, сооружение которого в настоящее время ведется во французском Кадараше. Однако этот проект выходит на финишную прямую: уже заключены контракты более чем на 80% комплектующих, получение первой плазмы планируется на 2020 год.

Интересно также отметить, что в ходе весьма неспешной работы над созданием ИТЭР у этого проекта постепенно образовался целый шлейф сопутствующих исследовательских подпроектов и инсталляций. В непосредственной близости от главной стройплощадки ИТЭР в Кадараше планируется соорудить исследовательский реактор JHR (Jules Horowitz Reactor), предназначенный для экспериментальной проверки возможности создания гибридной ядерно-термоядерной установки нового поколения. Одним из непосредственных «бенефициаров» этого реактора, стоимость строительства которого пока оценивается в 750 млн евро, должна также стать ядерная медицина: после запуска на нем планируется нарабатывать различные короткоживущие радиоизотопы, которые будут поставляться медицинским учреждениям для последующего использования в диагностических и терапевтических целях.

Еще одна «производная» ИТЭР — установка IFMIF (International Fusion Materials Irradiation Facility), совместный проект Евратома (Европейского сообщества по атомной энергии) и Японии, специально создаваемая для стандартизации результатов испытаний различных материалов.

Другой важнейший панъевропейский проект — XFEL, рентгеновский лазер на свободных электронах в немецком Гамбурге. Его строительство было начато в 2009 году, в июне 2012-го закончена двухлетняя постройка шестикилометровой системы туннелей, а первые эксперименты намечены на 2016 год. Задача XFEL — увидеть структуру вещества. Излучение рентгеновского диапазона позволит «сфотографировать» отдельные молекулы и протекание химических реакций. Яркость будущего рентгеновского лазера будет превосходить существующие источники синхротронного излучения более чем в 100 млн раз, а длительность импульса на нем будет составлять около 100 квадриллионных долей секунды. Изначальная стоимость — 1,082 млрд евро — уже подросла на 150 млн, причем доля активно участвующей в проекте России составляет чуть меньше четверти.

Сопоставимый по финансовым затратам с XFEL международный проект, реализуемый в Центре по изучению тяжелых ионов имени Гельмгольца в немецком Дармштадте (FAIR, Facility for Antiprotons and Ions Research), — комплекс ускорителей и детекторов, включающий в себя тяжелоионные синхротроны, накопители вторичных пучков и электрон-ионный коллайдер. Его стоимость чуть более миллиарда евро. Основную часть профинансировала Германия, остаток — партнерство из девяти стран, опять-таки включая Россию. На FAIR около трех тысяч исследователей со всего мира будут выполнять эксперименты для понимания фундаментальной структуры материи и механизмов эволюции Вселенной, в том числе исследование структуры ядра, реакций с пучками редких изотопов, антипротонную аннигиляцию и сжатую барионную материю. Предусмотрена также отдельная установка по облучению при высоких энергиях для биофизических и материаловедческих исследований.