Выбрать главу

En la actualidad, las ecuaciones que describen los campos eléctricos y magnéticos son denominadas ecuaciones de Maxwell. Aunque poca gente ha oído hablar de ellas, son probablemente las ecuaciones comercialmente más importantes que conocemos. No sólo rigen el funcionamiento de todo, desde las instalaciones domesticas hasta los ordenadores, sino también describen ondas diferentes las de la luz, como por ejemplo microondas, radioondas, luz infrarroja y rayos X, todas las cuales difieren de la luz visible en tan sólo un aspecto: su longitud de onda (la distancia entre dos crestas consecutivas de la onda). Las radioondas tienen longitudes de onda de un metro o más, en tanto que la luz visible tiene una longitud de onda de unas pocas diezmillonésimas de metro, y los rayos X una longitud de onda más corta que una centésima de millonésima de metro. El Sol emite todas las longitudes de onda, pero su radiación es más intensa en las longitudes de onda que nos resultan visibles. Probablemente no es casualidad que las longitudes de onda que podemos ver a simple vista sean precisamente las que el Sol emite con mayor intensidad: es probable que nuestros ojos evolucionaran con la capacidad de detectar radiación electromagnética en dicho intervalo de radiación, precisamente porque es el intervalo que les resulta más disponible. Si alguna vez, nos encontramos con seres de otros planetas, tendrán probablemente la capacidad de «ver» radiación a las longitudes de onda emitidas con máxima intensidad por su sol correspondiente, modulada por algunos factores secundarios como, por ejemplo, la capacidad del polvo y de los gases de la atmósfera de su planeta de absorber, reflejar o filtrar la luz de diferentes frecuencias. Los alienígenas que hubieran evolucionado en presencia de rayos X tendrían, pues, un magnífico porvenir en la seguridad de los aeropuertos.

Las ecuaciones de Maxwell establecen que las ondas electromagnéticas se propagan con una velocidad de unos trescientos mil kilómetros por segundo, o unos mil ochenta millones de kilómetros por hora. Pero dar una velocidad no dice nada si no se especifica el sistema de referencia con respecto al cual está medida. En la vida corriente, no acostumbramos a tener necesidad de este detalle. Cuando una señal de tráfico indica 120 kilómetros por hora se sobreentiende que dicha velocidad se mide con respecto a la carretera y no con respecto al agujero negro del centro de la galaxia. Pero incluso en la vida corriente hay ocasiones en que debemos tener en cuenta los sistemas de referencia. Por ejemplo, si andamos a lo largo del pasillo de un avión en vuelo podemos decir que nuestra velocidad es de unos cuatro kilómetros por hora. Para los que estén en el suelo, sin embargo, nuestra velocidad será de unos novecientos cuatro kilómetros por hora. A menos que creamos que uno u otro de los observadores tiene mejores motivos para sostener que está en lo cierto, conviene tener presente esta idea porque, como la Tierra gira alrededor del Sol, alguien que nos estuviera observando desde la superficie de dicho cuerpo celeste discreparía de ambos y diría que nos estamos desplazando a unos treinta y cinco kilómetros por segundo, por no decir cuánto envidia nuestro aire acondicionado. A la luz de tales discrepancias, cuando Maxwell dijo que había descubierto que la «velocidad de la luz» surgía de sus ecuaciones, la pregunta natural era con respecto a que sistema de referencia viene indicada la velocidad de la luz en las ecuaciones de Maxwell.

No hay razón para creer que el parámetro de la velocidad en las ecuaciones de Maxwell sea una velocidad referida a la de la Tierra ya que, al fin y al cabo, esas ecuaciones son aplicables a todo el universo. Una respuesta alternativa que fue tomada en consideración durante algún tiempo fue que esas ecuaciones especificaban la velocidad de la luz con respecto a un medio hasta entonces no detectado que llenaba todo el espacio, denominado el éter luminífero o, en forma abreviada, simplemente el éter, que era el término utilizado por Aristóteles para la sustancia que, según creía, llenaba todo el universo más allá de la esfera terrestre. Ese éter hipotético sería el medio por el cual se propagarían las ondas electromagnéticas tal como el sonido se propaga por el aire. Si el éter existiera, habría un estándar absoluto de reposo, el reposo con respecto al éter, y por lo tanto también una manera absoluta de definir el movimiento. El éter proporcionaría un sistema de referencia preferido a través de todo el universo, con respecto al cual se podría medir la velocidad de cualquier objeto. Así, a partir de bases teóricas se postuló que el éter existía, cosa que hizo que varios científicos se dispusieran a hallar una manera de estudiarlo o, al menos, de confirmar su existencia. Uno de esos científicos fue el propio Maxwell.

Si corremos con respecto al aire hacia una onda sonora, la onda se nos acerca a mayor velocidad, y si nos alejamos de ella nos alcanza más lentamente. Análogamente, si existiera un éter, la velocidad de la luz variaría según nuestra velocidad con respecto al éter. De hecho, si la luz se comportara como lo hace el sonido ocurriría que, así como los que viajan en avión supersónico nunca oirán ningún sonido emitido desde la zona posterior del avión, los viajeros que corrieran con suficiente velocidad con respecto al éter dejarían atrás una onda luminosa. Basándose en esas consideraciones, Maxwell sugirió un experimento. Sí existe un éter, la Tierra debería estar moviéndose respecto a él a medida que gira alrededor del Sol. Y como la Tierra avanza en una dirección diferente en enero que, digamos, en abril o en julio, deberíamos ser capaces de observar una minúscula diferencia en la velocidad de la luz en diferentes épocas del año -véase la figura-.

Maxwell fue disuadido de publicar esta idea en los Proceedings of the Royal Society por su editor, que no creía que el experimento pudiera funcionar. Pero en 1879, poco antes de morir a los cuarenta y ocho años de un doloroso cáncer de estómago, Maxwell envió una carta sobre ese tema a un amigo. La carta fue publicada postumamente en la revista Nature donde fue leída, entre otros, por un físico norteamericano llamado Albert Michelson. Inspirado por la especulación de Maxwell, en 1887 Michelson y Edward Morley llevaron a cabo un experimento muy sensible diseñado para medir la velocidad con que la Tierra viaja con respecto al éter. Su idea era comparar la velocidad de la Luz en dos direcciones diferentes, perpendiculares entre sí. Si la velocidad de la luz con respecto al éter tuviera un valor fijo, esas medidas deberían revelar velocidades de la luz que diferirían según la dirección del haz. Pero Michelson y Morley no observaron ninguna diferencia.

El resultado del experimento de Michelson y Morley está claramente en contradicción con el modelo de ondas electromagnéticas que viajan a través de un éter, y debería haber hecho que el modelo del éter fuera abandonado. Pero el objetivo de Michelson había sido medir la velocidad de la luz con respecto al éter, pero no demostrar o refutar la hipótesis del éter, y lo que halló no le condujo a concluir que el éter no existiera. Ningún otro investigador llegó, tampoco, a dicha conclusión. De hecho, el célebre físico sir William Thomson (lord Kelvin) afirmó, en 1884, que «el éter luminífero es la única sustancia de la cual estamos seguros en dinámica. Una sola cosa tenemos por cierta: la realidad y la sustancialidad del éter luminífero».