La idea de que un episodio inflacionario como éste pudiera haberse producido fue propuesta por primera vez en 1980, a partir de consideraciones que van más allá de la teoría de Einstein de la relatividad general y tienen en cuenta aspectos de la teoría cuántica. Como no disponemos de una teoría cuántica completa de la gravedad, los detalles todavía están siendo elaborados, y los físicos no están del todo seguros de cómo ocurrió la inflación. Pero según la teoría, la expansión causada por la inflación no habría sido completamente uniforme, en contraste con lo que predice la imagen del Big Bang tradicional. Esas irregularidades producirían variaciones minúsculas en la temperatura de la radiación cósmica de fondo en diferentes direcciones. Esas variaciones son demasiado pequeñas para que hubieran podido ser detectadas en la década de 1960, pero fueron descubiertas por primera vez en 1992 por el satélite COBE de la NASA, y posteriormente medidas por su sucesor, el satélite WMAP, lanzado en 2001. En consecuencia, estamos bastante seguros de que la inflación realmente tuvo lugar.
Irónicamente, aunque pequeñas variaciones en la radiación cósmica de fondo constituyen una evidencia de la inflación, una de las razones por las cuales la inflación es importante es la uniformidad casi perfecta de la temperatura de la radiación cósmica de fondo. Si calentamos una parte de un objeto a una temperatura mayor que la de sus alrededores y esperamos, la zona caliente se irá enfriando y sus alrededores se irán calentando hasta que la temperatura sea uniforme. Análogamente, esperaríamos a que el universo llegara a tener una temperatura uniforme, pero ello requeriría tiempo, y si la inflación no se hubiera producido no habría habido suficiente tiempo en toda la historia del universo para que el calor de zonas muy separadas se igualara, suponiendo que la velocidad de la transferencia de dicho calor estuviera limitada por la velocidad de la luz. Un período de expansión muy rápida (mucho más rápida que la velocidad de la luz) pone remedio a ese problema, ya que en ese caso sí habría habido tiempo suficiente para igualar la temperatura de la zona extremadamente diminuta del universo primitivo preinflacionario.
La inflación explica el estallido o «bang» del Big Bang, al menos en el sentido que durante el intervalo que duró la inflación la expansión fue mucho más extremada que la predicha por la teoría tradicional del Big Bang de la relatividad general. El problema es que, para que los modelos teóricos de la inflación funcionen, el estado inicial del universo tuvo que ser muy especial y altamente improbable. Así pues, la teoría tradicional de la inflación resuelve un conjunto de problemas pero crea otro -la necesidad de un estado inicial muy especial -. Esta cuestión del instante cero es eliminada en la teoría de la creación del universo que estamos a punto de describir.
Como no podemos describir la creación utilizando la teoría de Einstein de la relatividad general, esta teoría debe ser reemplazada por una teoría más completa si queremos describir el origen del universo. De hecho, incluso en el caso de que la relatividad general no condujera a una singularidad, sospecharíamos la necesidad de una teoría más completa, porque la relatividad general no toma en consideración las estructuras de la materia a pequeña escala, que son regidas por la teoría cuántica. Ya mencionamos en el capítulo 4 que para casi todos los efectos prácticos la teoría cuántica no es muy relevante en el estudio de la estructura a gran escala del universo porque se aplica a la descripción de la naturaleza a escalas microscópicas. Pero si retrocedemos suficientemente en el tiempo, el universo alcanza un tamaño tan minúsculo como el tamaño de Planck, una milmillonésima de billonésima de billonésima de centímetro, en el cual la teoría cuántica de la gravedad debe ser tomada en consideración. Así, aunque aún no disponemos de una teoría cuántica completa de la gravedad, sabemos que el origen del universo fue un suceso cuántico. Por consiguiente, así como combinamos la teoría cuántica y la relatividad general -al menos provisionalmente- para deducir la teoría de la inflación, si queremos ir aún más atrás y comprender el origen del universo debemos combinar lo que sabemos de la relatividad general con la teoría cuántica.
Para ver cómo se hace eso, necesitamos comprender el principio de que la gravedad deforma el espacio y el tiempo. La deformación del espacio es más fácil de visualizar que la del tiempo. Imaginemos que el universo es la superficie de una mesa de billar plana. La superficie de la mesa es un espacio plano, al menos en dos dimensiones. Si hacemos rodar una bola por la mesa irá en línea recta. Pero si la mesa se deforma o tiene pequeñas protuberancias en algunos lugares, como en la ilustración siguiente, la trayectoria de la bola se curvará.
En el caso que estamos considerando es fácil constatar que la mesa de billar está deformada porque vemos que se curva hacia una tercera dimensión exterior, que podemos representar. Pero como no podemos saltar fuera de nuestro propio espacio-tiempo para ver su deformación, resulta más difícil imaginar la deformación del espacio-tiempo de nuestro universo. Pero su curvatura puede ser constatada aunque no podamos salir de él y verla desde la perspectiva de un espacio mayor, ya que puede ser detectada desde el interior del mismo espacio. Imaginemos que una microhormiga está confinada sobre la superficie de la mesa. Incluso aunque no pueda abandonar la mesa, la hormiga podría detectar la deformación si midiera cuidadosamente las distancias sobre la mesa. Por ejemplo, la longitud de una circunferencia en el espacio plano es siempre algo mayor que tres veces la longitud de su diámetro (el múltiplo real es el número PI). Pero si la hormiga trazara un círculo alrededor del pozo de la mesa de billar representada en la figura, vería que la longitud de su diámetro es mayor de lo esperado, es decir, mayor que un tercio de la longitud de su circunferencia. De hecho, si el pozo fuera suficientemente profundo, la hormiga hallaría que la longitud de la circunferencia es menor que la longitud del diámetro. Lo mismo ocurre con la deformación de nuestro universo: alarga o contrae la distancia entre los puntos del espacio y modifica su forma o geometría de una manera que puede ser medida desde el interior del mismo universo. La deformación del tiempo alarga o acorta los intervalos temporales de una manera análoga.
Pertrechados con esas ideas, volvamos a la cuestión del inicio del universo. Podemos hablar de espacio y de tiempo por separado, tal como hemos visto en las explicaciones anteriores, en situaciones con velocidades pequeñas y gravedad débil. En general, sin embargo, el tiempo y el espacio están imbricados entre sí, de manera que sus alargamientos y acortamientos también implican una cierta mezcla entre ellos. Esa mezcla es importante en el universo primitivo y es la clave para entender el inicio del tiempo.
La cuestión del inicio del tiempo viene a ser algo análogo a la cuestión del borde del mundo. Cuando la gente creía que el mundo era plano se podría haber preguntado si el mar se derramaba por sus bordes. Eso ha sido estudiado experimentalmente: se puede dar la vuelta al mundo y no caer de él. El problema de lo que ocurre en el borde del mundo fue resuelto cuando la gente se dio cuenta de que el mundo no era una superficie plana sino curvada. Sin embargo, el tiempo parecía ser como una vía de tren. Si tuvo un origen, debía haber allí alguien, por ejemplo Dios, para poner los trenes en marcha. Aunque la teoría de Einstein de la relatividad general unificaba el tiempo y el espacio en el espacio-tiempo y suponía una cierta mezcla entre tiempo y espacio, el tiempo seguía siendo diferente del espacio y, o bien tenía un inicio v un final, o bien seguía indefinidamente. Sin embargo, una vez incorporamos los efectos de la teoría cuántica a la teoría de la relatividad general, en algunos casos extremos la deformación puede llegar a ser tan grande que el tiempo se comporte como una dimensión del espacio.