Выбрать главу

В бортовое оборудование космических аппаратов, кроме электромеханических систем ориентации, энергоснабжения, терморегулирования, входят другие электромеханические устройства. К этим устройствам относятся электромеханические лентопротяжные механизмы, применяемые в системах памяти ЭВМ, в запоминающих устройствах или фотометрических приборах. Очень важное значение имеют электромеханические синхронизированные двигатели или также используемые механизмы для сканирующих узлов телефотометрических аппаратов. Так как сканирующие приборы вращают узлы оптической системы в разные стороны поперек движения спутника по орбите, последовательно просматривая участок за участком в заданной полосе обзора, то от точности движения ротора электродвигателя или движения механизма зависят качество и разрешающая способность оптической аппаратуры.

Период сканирования, т. е. период колебательного механического движения зеркала поперек трассы, носит довольно сложный характер и требует прецизионных электронных систем регулирования движения ротора (соответствующего механизма) для обеспечения нужной закономерности при ходе зеркала вперед (когда снимается фотоизображение) и при ходе назад (когда фотоаппаратура не функционирует). В таких телефотометрических системах применяется бортовое и наземное единое время с помощью синхронной записи на магнитную ленту меток времени наряду с записью телефотоизображения. Это делается для того, чтобы на Земле получить соответствующее синхронное изображение поверхности с помощью воспроизведения синхронизирующим электрическим двигателем (преобразователем) движения пленки, на которой имеется зарегистрированное на борту спутника изображение. Таким образом, орбитальная бортовая электромеханическая система спутника должна неразрывно быть связана по времени с электромеханическими системами на Земле.

К наземному оборудованию предъявляются жесткие требования относительно синхронного и синфазного движения с движением орбитальных электродвигателей. Эта синхронность и синфазность обеспечивается системой радиопередатчиков и радиоприемников, которые, в свою очередь, могут вносить помехи и искажения в передаваемую информацию. Такая единая электромеханическая система регистрации изображения во времени (см. рис. 3) имеет исключительно важное значение для привязки изображения к географической местности и для опознания образов, характеризующих состояние посевов, ход уборки урожая, созревание сельскохозяйственных культур, а также для регистрации лесных пожаров, движения косяков рыб и т. д.

Сложные электромеханические устройства, связанные с движением роторов электродвигателей, якорей электромагнитов и реле, электронная техника как в виде отдельных блоков, так и встроенных в корпусы электрических машин и аппаратов — все это требует тщательных контрольных испытаний, гарантирующих полную уверенность в нормальной работе спутника на орбите. Наряду с исследованием отдельных электромеханических систем также должны быть испытаны функциональные связи различных систем, входящих в состав спутников.

В наземных испытаниях следует подвергать тщательному анализу все причины, вызывающие те или иные отклонения при движении аппарата (в стационарных и нестационарных режимах работы электродвигателя и аппаратуры). Иногда для этого требуется многократно дублировать наиболее важную и непрерывно действующую аппаратуру. Все электрические механизмы перед установкой на спутниках проверяются, в частности, в условиях транспортировки, условиях перегрузок при выводе на орбиту, условиях изменения в широких диапазонах значений окружающей температуры, питающего напряжения. В каждом таком режиме проверяется точность функциональной характеристики аппаратуры. В наземных условиях создаются условия глубокого вакуума, низких температур, где в окончательной форме проявляется работоспособность всей аппаратуры. Для проведения наземных испытаний отдельных элементов и электромеханических систем космического аппарата в целом большое значение имеет использование ЭВМ.

Чувствительные элементы электромеханических систем. Информационные приборы электромеханической системы управления дают возможность сориентировать космический объект при его движении в пределах космического пространства. Процесс ориентации в этом случае физически не отличается от ориентации под водой, на воде, в воздухе или на суше. Роль чувствительных элементов в этом процессе сводится к регистрации местоположения космического летательного аппарата, производимой специальным измерительным органом, и указанию его расположения относительно выбранных базовых направлений.

К чувствительным элементам относятся: астродатчики, пеленгаторы теплового поля Земли (так называемые построители местной вертикали), электромеханические гироскопы различных назначений, ньютонометры, приборы измерения гравитационного поля.

Астродатчики. Астродатчик представляет собой миниатюрный оптический телескоп с автоматической электромеханической системой наведения, использующей фотоэлементы, расположенные внутри телескопа. Во время движения спутника по орбите астродатчик сохраняет в поле зрения мини-телескопа изображение Солнца или заданной звезды, т. е. пеленгует небесные светила. В процессе пеленгации специальные электрические приборы, расположенные на осях мини-телескопа, регистрируют угловые координаты продольной оси телескопа относительно осей космического летательного аппарата и передают их в систему управления.

Построитель местной вертикали. Построитель местной вертикали пеленгует центр масс планеты (Земли). Пеленгация может осуществляться или с помощью гравитационного маятника, сохраняющего направление, связывающее центр масс спутника с центром масс планеты, или с помощью пеленгации теплового поля планеты. Чаще всего используется электромеханическая система пеленгации теплового поля Земли (или другой планеты).

Тепловой пеленгатор Земли представляет собой своеобразный телескоп (рис. 8), принимающий не видимые, а инфракрасные, т. е. тепловые, лучи и жестко связанный со строительными осями космического аппарата. Сигналы для пеленгации даются с помощью оптической системы, включающей электрический двигатель с зеркалом, вращающимся на его оси, и промежуточную систему зеркал, передающих сигналы на болометр-термоэлемент, воспринимающий тепловые сигналы Земли или другой планеты.

Рис. 8. Приборный узел построителя местной вертикали:

1 — телевизионные датчики; 2 — инфракрасный датчик; 3 — датчик построителя местной вертикали

По изменению интенсивности теплового излучения планеты, воспринимаемого при вращении зеркала, оптическая система с болометром позволяет определять граничный контур планеты в космосе и по этой границе осуществляет пеленгацию. По величине получаемой болометром энергии излучения автоматически (с помощью электронной аппаратуры) определяются угловые отклонения осей космического аппарата от запеленгованного направления, проходящего через центр планеты. Эти отклонения в виде электрических сигналов передаются в систему управления космического летательного аппарата, и с помощью силовых органов управления космический летательный аппарат ориентируется относительно двух осей — оси крена и оси тангажа. Благодаря этому создается следящая система, обеспечивающая ориентацию космического летательного аппарата относительно оси, проходящей через центр масс планеты.

Таковы принципы действия чувствительных приборов для «видимых» ориентиров, спектральные свойства и интенсивность которых могут быть зарегистрированы чувствительными элементами.