Выбрать главу

     - происходит пролив водорода, испарение и смешение его паров с воздухом и образование пожаро-взрывоопасного облака;

     - происходит воспламенение и взрывное сгорание неоднородной воздушно-водородной смеси, образование волн сжатия;

     - взрывные волны оказывают воздействие на ракету и, если их величина достаточно велика, это может привести к дальнейшему разрушению систем.

     Необходимо было учитывать, что на процесс сгорания воздушно-водородной смеси в сооружении и на увеличение интенсивности волн сжатия будет оказывать влияние наличие препятствий на пути распространения пламени, загромождения объема, а также ограничение пространства воздушно-водородной смеси стенками газовода.

     На основании работ, проведенных на экспериментальной базе, получены следующие результаты. Коллектор профилактической продувки обеспечивает в отсеке конуса двигательной установки полное замещение воздуха на азот за 11 мин. при расходе азота 0,6 кг/с и за 7 мин. - при расходе 1,2 кг/с. Коллектор аварийной продувки конуса двигательной установки обеспечивает продувку отсека за 5 мин. при расходе азота 15 кг/с и за 3 мин. - при расходе 21 кг/с.

     Первые продувки по вентиляции двигательного отсека выявили неудовлетворительную организацию азотной продувки в отсеке по расположению и диаметрам отверстий в коллекторах профилактической и аварийной продувок. После доработок коллектора профилактической продувки в двигательный отсек отдув отсека происходит за 5 мин. при расходе азота 0,6 кг/с и за 3 мин. - при расходе 1,2 кг/с. Оценена эффективность различных вариантов доработки коллектора аварийной продувки в двигательном отсеке, был выбран коллектор, обеспечивающий минимальное время продувки отсека за 45 с при начальном расходе азота 7,5 кг/с.

     Уточнены экспериментальные данные по максимальному забросу давления в отсеках конуса двигательной установки и двигательном отсеке при аварийной продувке. По результатам проведенных замеров установлено, что величина избыточного давления не превышает величины 0,25 атм.

     При натекании в отсек водорода с расходом 3 г/с штатная комбинация газоанализаторов обеспечивает обнаружение не менее 6 газоанализаторов из 8 в конусе двигательной установки и не менее 1 из 3 - в двигательном отсеке. При натекании кислорода с расходом 80 г/с обнаружение составляет не менее, чем 2 газоанализатора из 8 в конусе двигательной установки и не менее, чем одного - при натекании кислорода с расходом 60 г/с в двигательном отсеке. Выявлено, что для двигательного отсека и конуса двигательной установки аварийные продувки с расходом до 15 кг/с не создают акустических помех в работе газоанализаторов, расположенных на штатных местах.

     Показано, что при струйном натекании в отсек кислорода и водорода проявляется значительная неравномерность концентрационных полей, которая определяется, в основном, геометрией отсека и соотношением расходов натекающего компонента и газа продувки. Подтверждено наличие застойной зоны в районе третьей плоскости, что вызвало доработку коллектора профилактической продувки. Выявлена оптимальная комбинация точек контроля в конусе двигательной установки при натекании водорода до 2,3 г/с. Разработан и опробован метод поиска натеканий по данным газового анализа.

     Экспериментально установлено, что штатная аппаратура газового анализа обеспечивает обнаружение опасных концентраций водорода и кислорода, т.е. отклонение в показателях не превышает основной погрешности.

     Принятый алгоритм работы обеспечивает управление продувками при натекании водорода в отсек конуса двигательной установки до 36 г/с, исключающее заброс концентрации выше предельно допустимой при задержке срабатывания исполнительных средств не более 5 с, в двигательном отсеке - не более 1 с. При натекании кислорода с расходом до 480 г не наблюдается забросов концентрации выше допустимого уровня - 5 %, в двигательном отсеке при задержке 5 с кратковременный заброс составляет 7 %.

     Любая из штатных точек контроля в отсеке конуса двигательной установки при установке в них пожарного извещателя обеспечивает 100 %-е обнаружение возгорания водорода при длине факела пламени более 1 метра - укорочение пламени до 0,5 метра снижает вероятность обнаружения. Пламя длиной менее 0,5 м (верхнее и нижнее положения) в районе третьей плоскости не обнаруживается ни в одной точке контроля, что повлекло за собой модернизацию пожарных извещателей.