Средства подачи хладона обеспечивают полную флегматизацию натеканий кислорода с расходом не менее 1 килограмм в отсек конуса двигательной установки при средней концентрации водорода в отсеках 20 % за время не более 2 секунды с момента подачи хладона в коллектор.
Сброс азота из хвостового отсека, блоков А и дренажей магистрали агрегата гидропитания и турбогенераторной системы, выбросы гелия из сопел двигателей, имеющие место до начала выбросов непрореагировавшего водорода, не приводили к существенной баллистировке воздушной среды в объеме стендового пускового устройства и газовода модели старта. Концентрация кислорода не опускалась ниже 15 %, что обеспечивало нормальное горение зажигательного устройства.
При штатном включении системы дожигания выбросов непрореагировавшего водорода обеспечивается надежное, без возникновения ударно-волнового воздействия, воспламенение и горение выбросов водорода. На режиме останова двигателей имел место охват пламенем ракеты до верхней части конуса двигательной установки вследствие отсутствия эжекции на данном режиме. Указанный эффект уменьшался при увеличении расхода продувки двигателя азотом и полностью исчезал при расходе азота, соответствующем 4 кг/с на двигатель, отсутствие охвата не наблюдалось и при включении воды, имитирующей охлаждение лотка старта. Показано, что снижение содержания кислорода в объеме стендового пускового устройства до 3-5 % предварительным заазочиванием, уменьшение количества зажигательных устройств до одного и уменьшение длины факела не привело для модели 1:10 к ухудшению характеристик воспламенения и догорания выбросов непрореагировавшего водорода при штатной циклограмме работы системы дозаправки.
Включение системы дожигания выбросов непрореагировавшего водорода через 2 с после начала выброса водорода с модельным расходом, соответствующим 7 кг/с натурного расхода на один двигатель, привело к взрывному возгоранию водородно-воздушной смеси в стендовом пусковом устройстве с образованием (даже для крупномасштабной модели) избыточного давления на днище конуса двигательной установки 0,021 атм., и на стенках стендового пускового устройства - до 0,031 атм. При подаче воды давление понижалось до 0,01 МПа.
Температура факелов системы дожигания выбросов непрореагировавшего водорода снижалась при подаче воды в стендовое пусковое устройство. При этом на всех режимах выбросов непрореагировавшего водорода предварительное включение системы дожигания или штатное включение системы обеспечивало безударное воспламенение выбросов. Характер воспламенения не изменился даже при уменьшении количества зажигательного устройства до четырех и одного.
Испытания подтвердили надежность и эффективность выбранного метода нейтрализации заданных по циклограмме выбросов водорода и обоснованность разработанной структуры и схемы системы дожигания выбросов непрореагировавшего водорода. Показано, что ограничение пространства стенками оказывает заметное влияние на избыточное давление в образующейся при горении водородно-воздушных смесей волне сжатия, воздействующей на ракету. Показано, что в случае воспламенения с некоторой задержкой после начала пролива жидкого водорода, когда водород успевает достаточно хорошо перемешаться с воздухом, а облако водородно-воздушной смеси - достичь значительных размеров, сгорание смеси происходит чрезвычайно энергично и проникающее избыточное давление может существенно превышать допустимое значение. Показано, что в случае инициирования до момента начала пролива сгорание смеси происходит в спокойном режиме без образования волн сжатия с заметной амплитудой. Доказано, что для обеспечения надежного воспламенения образующейся при проливе неоднородной низкотемпературной воздушно-водородной смеси необходимо использование источника инициирования достаточной интенсивности (факела водородно-воздушных горелок), в частности системы дожигания выбросов непрореагировавшего водорода.
Созданная бортовая система пожаро-взрывопредупреждения с ее сетью газоанализаторов, пожарных оповещателей, аппаратурным составом бортовой автоматики и средствами профилактики с запасами фреона имеет достаточно большую массу. При производной по массе порядка 0.95, это - практически прямая потеря массы полезного груза.
Дальнейшее совершенствование системы требует более широкого и глубокого исследования. Существует ряд направлений. Все они подчинены желанию достичь малой конструктивной массы системы. Например, снять эту систему с борта и разместить ее на стартовом сооружении, при этом отбор газовой среды из контролируемых полостей производить через сеть капиллярных легких трубопроводов дистанционно. Аналогично располагать и средства подавления аварийной ситуации. В предстартовый момент заполнять опасные полости флегматизирующим составом или нейтральным газом с земли.