Величины ударно-волнового давления для ракеты определялись для расчетных максимальных градиентов нарастания давления в камерах сгорания двигателей РД-170 и РД-0120. При таких градиентах подача воды приводит к снижению уровней ударно-волнового давления в 2-3 раза. Однако результаты многочисленных автономных стендовых испытаний двигателей РД-170 и РД-0120 показали, что реальные наибольшие значения градиентов нарастания давления в камерах меньше расчетных в 1,75-2 раза. При таком уменьшении градиентов нарастания давления в камерах величина ударно-волнового давления уменьшается в 2-3 раза. Стендовые испытания ракетных блоков первой и второй ступеней подтвердили эти данные, таким образом, при пуске первой ракеты без подачи воды только за счет уменьшения градиентов нарастания давления в камерах сгорания двигателей ожидалось снижение величин ударно-волнового давления на днищах блоков А и Ц в 2-3 раза. Подача воды, естественно, осуществила бы дальнейшее снижение величин волнового давления.
К одной из опасных газодинамических нагрузок, действующих на ракету при старте, относится силовое и тепловое воздействие отраженных от стартового сооружения струй маршевых двигателей. Опыт разработки различных носителей показал, что величина силового воздействия отраженных струй может существенно превышать ударно-волновое давление и привести к недопустимым для ракеты нагрузкам.
Газодинамические нагрузки от отраженных струй зависят, главным образом, от конфигурации стартового сооружения и траектории отхода ракеты от стартового сооружения. Определить расчетными методами эти нагрузки не представляется возможным ввиду исключительно сложной газодинамической картины течения. Решение этой проблемы экспериментальным путем сводится к большому объему модельных испытаний. Это связано с тем, что при отходе ракеты от стартового сооружения могут иметь место многочисленные реализации траекторий как для штатных, так и нештатных ситуаций. Кроме того, зоны воздействия носят локальный характер, что требует тщательного экспериментального исследования.
Испытания проводились на модели М 1:72. Первая серия испытаний проводилась для штатных траекторий. Результаты испытаний показали, что при малом боковом смещении ракеты относительно стартового сооружения (0,25 м на высоте 3-4 м) воздействия на ракету от отраженных струй практически отсутствуют.
Вторая серия испытаний проводилась для нештатных траекторий, где боковые смещения существенно больше, чем для штатных. На высотах 3-4 м боковые смещения для некоторых реализаций траекторий составляют 0,8 м. В этих случаях имеет место воздействие отраженных струй на донную часть блока А. Величины этих воздействий находятся в допустимых пределах и не превышают 0,37 атм.
Кроме того, были проведены методические исследования, в которых определены условия, где могут иметь место недопустимые воздействия на днище. Уровни давлений в этих случаях достигают величин 0,7-0,8 атм. В общей сложности было проведено более 500 экспериментов.
Таким образом, в результате исследований были установлены уровни давления, действующие на ракету от отраженных струй в зависимости от положения ракеты в процессе отхода, и определены зоны положения ракеты, где реализуются недопустимые величины давлений.
Результаты первого пуска ракеты ⌠Энергия■ показали, что силовое воздействие на днище от отраженных струй отсутствует, так как траектория отхода ракеты от стартового сооружения близка к штатной.
Для отделения параблоков А от блока Ц с установленным на нем полезным грузом было использовано на внешней стороне параблоков 22 твердотопливных двигателя - по 11 на каждом. При этом 7 устанавливались в верхнем и 4 - в нижнем отсеках. Двигатели работали на смесевом топливе.
В процессе отвода параблоков с работающими двигателями элементы конструкции блока Ц и полезного груза подвергаются силовому, тепловому и эрозионному воздействиям продуктов сгорания. Струи продуктов сгорания, истекающие из сопла, взаимодействуют между собой и образуют сложную пространственную структуру ударных волн. Физическая картина течения струй существенно усложняется за счет внешнего спутного потока, взаимодействия со струями двигателей увода противолежащих параблоков, поверхностью блока Ц и полезного груза. Сложность газодинамической картины течения в областях взаимодействия газовых потоков двигателей увода между собой и с поверхностью ракеты, а также с внешним набегающим потоком не позволяла с достаточной точностью определить расчетным путем величины давлений на элементы конструкции ракеты.