Система средств контроля и парирования нештатных ситуаций обеспечивает требуемый уровень безопасности при электроиспытаниях, подготовке к пуску и в полете. Для этого созданы средства контроля параметров для фиксации нештатных ситуаций на основе использования информационно-распределительной системы, матобеспечения бортового и наземного цифрового вычислительного комплекса; средства контроля возникновения нештатных ситуаций в матобеспечении цифрового вычислительного комплекса блока второй ступени, блоков первой ступени, цифрового вычислительного комплекса наземной аппаратуры централизованного комплекса автономного управления и их парирования в полете и на заключительных участках подготовки путем локализации нештатных ситуаций, либо централизованного перевода комплекса автономного управления в режим автоматического прекращения пуска.
Для системы оперативной оценки результатов комплексных испытаний и пуска в матобеспечении бортового и наземного цифрового вычислительного комплекса были созданы средства доставки и оценки данных с выводом на печать результатов и значений первичных контролируемых параметров.
Основой экспериментальной базы для проведения исследований и отработки аппаратуры и программного обеспечения были исследовательские стенды, аналого-цифровые комплексы и комплексные стенды. Исследовательские стенды позволяли провести моделирование отдельных этапов полета ракеты-носителя и полета в целом как в штатном, так и в нештатном режимах. Аналого-цифровой комплекс использовался для моделирования углового движения ракеты с учетом упругих колебаний корпуса и жидкости в топливных баках с задействованием реальных рулевых приводов. Комплексные стенды позволили проверить полную совместимость программного и аппаратного обеспечения системы управления в штатном и нештатном режимах подготовки, пуска и полета ракеты.
Объем и сложность задач, возложенных на комплекс автономного управления ракеты-носителя "Энергия", применение многомашинной структуры вычислительного комплекса, высокие требования к качеству и надежности его программного обеспечения вызвали необходимость решения проблемы разработки и испытаний большого комплекса взаимосвязанных бортовых программ. Объем программного продукта для бортового цифрового вычислительного комплекса составлял около 150 тыс. шестнадцатиразрядных слов. Кроме того, создавались программы для проведения проверок на всех рабочих местах при проведении автономных и комплексных испытаний, огневых стендовых испытаний блоков первой ступени, блока второй ступени и подготовки к пуску ракеты-носителя "Энергия".
Для разработки программного обеспечения комплекса автономного управления была развита и использована современная технология создания программного обеспечения, которая базируется на автоматизированной среде производства программ. Автоматизированная среда производства программ - это программно-аппаратный комплекс, обеспечивающий технологическую поддержку всех этапов жизненного цикла программного продукта, начиная от проектирования и кончая сопровождением и эксплуатацией.
Основные научно-технические решения автоматизированной среды производства программ следующие:
- интегрированный набор высокопроизводительных средств, объединенных в одну систему, открытую для расширений и модификаций;
- простой и гибкий интерфейс с пользователем, в максимальной степени способствующий повышению производительности, на базе единого языка управления заданиями;
- концентрация всех данных разработки в едином банке данных проекта;
- специально разработанный язык высокого уровня и ассемблерная система;
- системы отладки и испытаний программного обеспечения.
Теоретическое обоснование принятых решений проводилось на базе потоковой модели технологического цикла, позволяющей провести увязку всех средств и обрабатываемых данных, определить оптимальные маршруты и максимально распараллелить процессы.
На базе автоматизированной среды производства программ создан ряд исследовательских стендов для моделирования движения ракеты в штатном и нештатном режимах с учетом возмущений параметров ракеты и внешней среды. В общей сложности на исследовательских стендах проведено свыше тысячи контрольных тестов ("полетов") и исследовано поведение ракеты в полете более чем в 200 штатных и нештатных ситуациях.