Выбрать главу

     При создании управляющих воздействий на ракете-носителе "Энергия" участвуют 40 исполнительных органов: 32 рулевых привода управляют двигателями РД-170 на блоках первой ступени и 8 рулевых приводов - маршевыми двигателями второй ступени. В случае отказа одного из двигателей первой или второй ступеней нарушается симметрия в схеме распределения сил при формировании управляющих воздействий по каналам тангажа, рыскания и крена. Это приводит к ухудшению условий управляемости и стабилизации ракеты-носителя.

     В целях обеспечения достаточности управляющих усилий при заданных диапазонах отклонений управляющих органов или при условии возможного отказа одного из двигателей решена задача оптимального распределения ресурсов управляющих органов. Принятое решение проверено моделированием на цифровой вычислительной машине и аналого-цифровом комплексе.

     Динамическая схема ракеты-носителя с полезным грузом описывается системой из более 500 дифференциальных уравнений. Коэффициенты уравнений системы с учетом различных эксплуатационных режимов состоят из нескольких десятков тысяч параметров. Все известные аналоги имели порядок системы уравнений не более 50 и только сотни переменных параметров.

     Существующие технологии проектирования на базе отечественной вычислительной техники не могли обеспечить решение поставленной задачи.

     Для успешного решения всего комплекса вопросов, связанных с созданием системы угловой стабилизации ракеты-носителя "Энергия", была разработана новая технология проектирования, в основе которой лежит расчленение единой системы уравнений на ряд подсистем со слабо выраженными функциональными связями, создание единого банка данных, объединение в единую сеть большого числа аналоговых и цифровых вычислительных средств и создание на их базе аналого-цифрового комплекса, разработка пакета примерных программ, создание цифрового моделирующего комплекса, создание комплекса нагрузочных стендов и станций гидропитания рулевых приводов.

     Основная проблема при создании системы наведения ракеты-носителя "Энергия" связана с необходимостью учета в алгоритмах комплекса автономного управления влияния отказа любого из восьми двигателей на траекторию полета и определением программы управления в случае падения суммарной тяги двигательной установки на величину, достигающую 40 % номинального значения.

     Аналогичная задача решается системой управления многоразовой космической системы "Спейс Шаттл" в случае отказа одного из трех маршевых двигателей, приводящего к снижению суммарной тяги двигательной установки на первой ступени всего лишь на 7 % номинального значения. Относительно небольшое снижение суммарной тяги на первой ступени многоразовой космической системы "Спейс Шаттл" позволяет использовать на атмосферном участке выведения методы управления, максимально приближенные к традиционным.

     Значительное снижение уровня суммарной тяги двигательных установок на ракете-носителе "Энергия" в случае отказа двигателя потребовало разработки нового программно-адаптивного метода наведения на атмосферном участке. Этот метод позволяет формировать программу управления как для штатного полета, так и в случае отказа одного из восьми двигателей, и обеспечить выполнение ограничений по углу атаки и величине скоростного напора.

     Для управления движением ракеты-носителя "Энергия" на внеатмосферном участке выведения в условиях возможных нештатных ситуаций, связанных с отказом одного из двигателей, возникла необходимость использовать методы наведения, обеспечивающие выполнение сложных пространственных маневров с целью выведения полезного груза с реально сложившейся тяговооруженностью ракеты-носителя. Задача усложнялась неопределенностью момента отказа двигателя и уровня тяги работающих двигателей. Применение существующих в настоящее время функциональных методов в этом случае практически не представляется возможным из-за необходимости потребных опорных траекторий при всем многообразии возможных отказов в двигательной установке.

     Для управления ракетой-носителем "Энергия" на внеатмосферном участке выведения с выполнением заданных ограничений и краевых условий в штатном полете, а также при отказе одного из двигателей разработан итеративно-адаптивный метод управления, в основу которого положено использование оптимальных законов управления и решение краевой задачи. При этом совокупность краевых условий и ограничений определялась из условий, накладываемых средствами, обеспечивающими спасение экипажа и полезного груза, отделения параблоков, головного обтекателя и расчетной орбитой выведения.