Вот совокупность проблем, решение которых не приводит к однозначному выводу об эффективности многоразовых систем. Но наличие бесчисленных вариантов спасения и возврата говорит о том, что космический мир находится на пути принятия более определенного решения в пользу многоразовости ракет-носителей, по крайней мере, используемых в коммерческих целях.
Двигатели для многоразовых систем
Для многоразовых систем перспективного плана, создаваемых на моноблочных первой и второй ступенях, приобретают значение двигатели, работающие на трёх компонентах.
НПО Энергомаш ведёт разработку двух двигателей РД-701 и РД-704, работающих на трёх компонентах. Трёхкомпонентный ракетный двигатель РД-701 работает на двух режимах: режиме максимальной тяги 200 т в пустоте с использованием трёх компонентов - кислорода, водорода и углеводородного горючего, что соответствует работе ракеты в режиме первой ступени и режиме максимальной экономичности при пониженной тяге до 40% от максимального значения с использованием двух компонентов - кислорода, водорода при работе на второй ступени.
Как показал опыт, восстановительный газ на основе водорода приводит к водородному "охрупчиванию" с появлением трещин в наиболее напряжённых элементах конструкции. В связи с этим в качестве рабочего тела турбин турбонасосных агрегатов принят окислительный газ.
Турбонасосные агрегаты раздельные по каждому компоненту.
Предусмотрена окислительная схема с дожиганием при приемлемом уровне температуры рабочего тела турбины, которая позволяет обеспечить наиболее высокое давление в камере сгорания до 350 атмосфер на первом режиме. Эта схема, кроме того, позволяет в максимальной степени использовать многолетний опыт в разработке отечественных двигателей, выполненных по окислительной схеме.
В газогенераторы подаётся весь жидкий кислород и часть углеводородного топлива, потребная для выработки окислительного высокотемпературного газа, поступающего на привод турбин турбонасоса. Оставшаяся часть топлива и весь жидкий водород поступают непосредственно в камеры сгорания. На втором режиме углеводородное топливо используется только для газификации кислорода в газогенераторах.
Система подачи компонентов включает в себя три бустерных и турбонасосных агрегата каждого компонента и два однозонных газогенератора.
В конструктивном исполнении газогенераторы несколько отличаются друг от друга, что связано с необходимостью отбора части генераторного газа на привод турбины углеводородного горючего. Бустерные насосы шнековые. Система зажигания в газогенераторах и камерах - химическая, с использованием пускового горючего, заключённого в ампулы. Пневмосистема обеспечивает управление агрегатами автоматики двигателя и включает в себя баллоны с газообразным гелием.
В состав двигателя входят теплообменники для подогрева гелия и водорода, используемых в системе наддува баков. Запуск двигaтeля осуществляется на режиме малой тяги (второй режим). При переходе на второй режим керосин отключается и соответственно уменьшается подача в камеру кислорода. В камере устанавливается давление 140 атмосфер.
Использование в одном двигателе комбинации двух горючих - углеводородного, обладающего высокой плотностью, и водорода, обеспечивающего высокие значения удельного импульса, расширяют возможности ракет-носителей. При этом редкие теплофизические характеристики водорода дают возможность использовать его эффективно в качестве охладителя и рабочего тела для привода насосов.
Двигатель РД-704 - модификация РД-701. Двигатель РД-704, в отличие от РД-701, однокамерный, а в остальном используются все агрегаты, предназначенные для базового двигателя, кроме турбонасосного агрегата.
Работы по созданию трёхкомпонентного двигателя ведутся и в Воронеже - в КБХА. В основе разработок - опыт создания двигателей своего направления. Отличие состоит в составе рабочего тела турбин. КБ "Энергомаш" приняло схему подачи рабочего тела с избытком окислителя, КБХА - с избытком горючего.
Главной особенностью варианта, разрабатываемого в Воронеже, является использование водородного двигателя РД-0120 с минимальными переделками. Наиболее крупная доработка связана с заменой существующего газогенератора на трёхкомпонентный и введение системы подачи керосина в газогенератор. Для двигателей разработки "Энергомаш", создающего трёхкомпонентную систему на базе кислородно-керосиновых двигателей, необходимо введение системы подачи водорода, переделка камеры сгорания под три компонента и для охлаждения её водородом.