После выполнения разворота по курсу блок совершает полет в режиме стабилизации максимального аэродинамического качества на высоте 18 км при М=1,1, а с уменьшением числа М до 0,75 для облегчения раскрытия крыльев большого удлинения совершает маневр типа "горка" с выходом на малые углы атаки.
Траекторию возвращения при высоте 13 км можно представить состоящей из трех участков: квазистационарного планирования с высотой от 13 до 5 км, горизонтального полета на высоте 5 км (М=0,42) и планирования с этой высоты. Потребный расход топлива с учетом встречного ветра составляет 1200 кг.
Широкий диапазон изменения режимов полета предъявляет высокие требования к контуру обеспечения устойчивости и управляемости, который должен обеспечивать хорошее качество управления по быстродействию системы, по максимально возможной развязке каналов и демпфированию. Такие же требования предъявляются к системе информационного обеспечения, в частности, к воздушно-скоростным параметрам.
Блок имеет совершенную информационную систему, позволяющую определять текущие значения воздушных аэродинамических углов, скорость полета относительно воздушной среды, высоту полета, скоростной напор и число М. Имеющаяся на борту вычислительная машина при известных параметрах системы имеет возможность алгебраического расчета по конечным соотношениям сигналов, близких к производным углов атаки, скольжения и скоростного крена, которые используются при построении алгоритмов. Подобный подход использовался в системе управления орбитальным кораблем "Спейс Шаттл". Структура контура обеспечения устойчивости и управляемости по продольному каналу во всем рассматриваемом диапазоне чисел М и бокового канала на режимах предпосадочного маневрирования (М=0,25-0,7 - крыло разложено) может быть построена по нормальной самолетной схеме на принципах разделения форм движения с хорошим качеством отработки, задаваемых командных значений угла атаки и угла крена. Структура контура бокового канала на режимах полета со сложенным крылом (М=0,8) при наличии в боковом канале одного отсека управления (руля управления) построена по обращенной схеме на основе свойства обратной реакции крена на отклонение органа поперечного управления ракеты-носителя.
Таким образом, проведенные исследования показали возможность реализации аэродинамической схемы блока А с выдвижным крылом большого удлинения, обеспечивающего очень высокий уровень аэродинамического качества (17-19) на режиме дозвукового полета и несущих свойств крыла на посадке без использования механизации.
Размещение средств возвращения на блоке А максимально увязано с существующей конструктивно-силовой схемой блока, а изготовление основных элементов средств возвращения крыла и оперения базируется на достигнутой к этому времени технологии.
Работы по исследованию роторных систем, используемые в качестве тормозного устройства, проводились в США, Англии и Франции с 1950 г. По результатам этих исследований отмечалось, что в весовом отношении роторная система посадки может конкурировать с парашютной. В качестве примера можно привести результаты сравнения весовых характеристик различных систем, обеспечивающих безопасное снижение первой ступени ракеты. Из рассматриваемых четырех систем такого рода первая - торможение в атмосфере, задействование парашютов, ракетные двигатели мягкой посадки; вторая - торможение в атмосфере, парашюты и газовые подушки мягкой посадки; третья - торможение атмосферой, воздушно-реактивные двигатели; четвертая - роторная система. Вес средств приземления составляет соответственно 10; 13,4; 25,4; 10 % от веса первой ступени при полном выгорании топлива, а вес системы посадки - 2,9; 3,9; 7,3; 2,9 % от веса полезной нагрузки. Видно, что роторная система по весовой отдаче не хуже любой другой.
Особенностью предлагаемой Казанским авиационным институтом роторной системы посадки является использование гибкой, сворачиваемой в рулон лопасти. Несущая система на базе гибкой лопасти работает так же, как и несущий роторный винт с жесткими лопастями. При использовании двигательных установок, расположенных на концах лопастей, роторная система может выполнятъ функции несущего винта вертолета, позволяя маневрировать без потери высоты и обеспечивать точную "мягкую" посадку.