Система зажигания включает запальники, свечи, агрегат зажигания. Запальники форкамерно-факельного типа служат для воспламенения компонентов топлива в камере сгорания и газогенераторе. Гелий для наддува бака окислителя подогревается в теплообменниках. Газообразный водород для наддува бака горючего питания рулевых машин и турбогенераторной системы электроснабжения отбирается после охлаждения камеры сгорания.
Для управления ракетой по тангажу, рысканию и крену двигатель при помощи двух рулевых машин качается в подвеске.
Были исследованы различные варианты принципиальных схем двигателей. Схема с одновальным турбонасосным агрегатом, несколько уступая другим рассматриваемым вариантам по оптимальности энергетических характеристик системы подачи, позволила существенно облегчить решение проблемы запуска двигателя. Эта схема также обеспечила более надежное разделение компонентов - отсутствует уплотнение между восстановительным газом турбины и кислородным насосом высокого давления, с меньшим расходом гелия для этого, и имеет лучшие массовые характеристики.
Для обеспечения бескавитационной работы насосов при заданных низких потребных превышениях входных давлений компонентов топлива над упругостью насыщенных газов (водород - 0,35 атм., кислород -1,1 атм.) в схеме двигателя предусмотрены бустерные насосные агрегаты.
Так как мощность насоса окислителя составляет только около 30 % мощности турбины, отбор кислорода на привод бустерного насоса окислителя незначительно влияет на суммарную мощность турбонасосного агрегата, а конструкция бустера существенно упрощается по сравнению с вариантом газового привода, то для бустера окислителя принята гидротурбина с приводом от генераторной ступени насоса окислителя. Для привода бустерного горючего принят газообразный водород, отбираемый из тракта охлаждения камеры. Использование такого водорода, а не кислорода, газифицированного в газогенераторе, является более оптимальным, так как позволяет обеспечить необходимую мощность турбины при более низкой температуре генераторного газа за счет сохранения максимального расхода водорода на привод этой турбины.
Проведенные исследования и оптимизация основных параметров двигателя, исходя из заданных значений тяги, удельного импульса, массы, привели к следующим параметрам на номинальном режиме:
- давление в камере (223 атм.), при котором гарантируется прочность напряженных элементов конструкции двигателя, в первую очередь рабочих колес турбины, обеспечивается в заданных габаритах двигателя требуемый удельный импульс тяги, реализуется надежное охлаждение камер;
- температура в газогенераторе (530 ╟С) - из условий работоспособности дисков и корпуса турбины;
- давление на выходе из насоса горючего (примерно 475 атм.), что является предельным для трехступенчатого насоса из-за ограничений по окружным скоростям колес и быстроходности подшипников;
- обороты турбонасосного агрегата (32500 об./мин.), оптимальные для водородного и кислородного насосов одновальной схемы;
- давлению на выходе из бустерных насосов окислителя и горючего (44 и 23 атм. соответственно), обеспечивающему бескавитационную работу насосов.
С целью обеспечения наилучших массовых характеристик двигателя, наряду с выбором оптимальных параметров, выбрана и компоновка двигателя. При этом большое внимание уделено выбору кинематической схемы подвески, обеспечивающей возможность поворота двигателя для управления вектором тяги на угол до 16 градусов, при одновременном отклонении на угол 7-11 градусов в двух взаимно перпендикулярных плоскостях. В результате принята подвеска с качанием за "голову" с использованием сферического шарнира, что позволяет, по сравнению с другими способами крепления, значительно снизить массу блока подвески и обеспечивает более свободное размещение агрегатов в зоне критического сечения и цилиндрической части камеры. На сферическом шарнире, воспринимающем тягу двигателя, используется специально созданное антифрикционное покрытие "Афтал" с коэффициентом трения 0,018-0,020, способное работать без смазки в течение длительного времени. Для обеспечения режима предпускового захолаживания и многократного включения в двигателе применены пневмо-, электро-пневмоклапаны и обратные клапаны на магистралях продувок. Для многоразового воспламенения компонентов топлива в генераторе и камере впервые в отечественной практике применена электроплазменная система с питанием запальных устройств компонентами, отбираемыми от магистралей двигателя на выходе из насосов. Регулирование тяги и соотношения компонентов осуществляется соответственно регулятором, установленным в магистрали окислителя генератора, и дросселем - на магистрали окислителя камеры.