Выбрать главу

     В процессе разработки агрегатов решен ряд конкретных проблемных вопросов.

     Для обеспечения необходимого напора потребовалось разработать крыльчатки, работоспособные при окружных скоростях 600 м/с, что в 1,7 раза превышает достигнутый в насосостроении уровень.

     Для решения проблемы разработано и испытано в водороде пять вариантов конструкций крыльчаток, созданы и методики испытаний.

     Создана крыльчатка из титанового сплава ВТ5-1КТ, заготовка изготавливается по гранульной технологии. Разрушающая окружная скорость 886 - 928 м/с.

     В связи с большой мощностью, с энергонапряженностью насоса при разработке потребовалось решить проблемы обеспечения его динамической прочности, достижения необходимого уровня коэффициента полезного действия, минимальных пульсации давления и осевой разгрузки ротора насоса. Выполнен большой объем расчетно-экспериментальных работ, в результате которых впервые в отрасли применены обратные лопаточные направляющие аппараты, плавающие уплотнения, работающие в жидком водороде и система осевой разгрузки ротора с расходящимися упорами подшипников.

     В отечественном двигателестроении до разработки турбонасосного агрегата двигателя второй ступени ракеты "Энергия" не было опыта применения закритических роторов в жидкостных ракетных двигателях.

     Для обеспечения устойчивости ротора турбонасосного агрегата двигателя выполнен комплекс расчетных и экспериментальных работ, разработана методика высокочастотной балансировки (до 33000 об/мин.). Созданы упругодемпферные опоры, обеспечивающие необходимое демпфирование и переход критических частот вращения с минимальными нагрузками на подшипнике.

     При обеспечении работоспособности основного и бустерных кислородных насосов основным вопросом явилось исключение возгорании конструкции при высоких давлениях среды (до 600 атм.), минимальных габаритах и массе системы подачи. Проблема решена путем применения впервые в отрасли двухвального кислородного бустерного насоса, разработкой специальных методик конструирования с использованием системы автоматического проектирования, широкого использования плавающих уплотнений и соединений с защитными покрытиями, стойкими к возгоранию, разработки специальных требований к изготовлению.

     Применительно к основному турбонасосному агрегату разработаны и внедрены новые технологии:

- термодиффузионное сращивание крупногабаритных деталей - обратные направляющие аппараты турбонасосного агрегата;

- ультразвуковой метод контроля усилий затяжки крепежных деталей;

- отливка высокоточных крупногабаритных деталей;

- высокотемпературная газостатическая обработка отливок;

- упрочнение поверхностного слоя деталей дробеструйной обработкой микрошариками;

- электроэрозионная обработка лопаток турбин пространственного профиля;

- изготовление плавающих уплотнений с паяными вставками из материала СоМ970;

- изготовление пластинчатых демпферов упруго-демпферных опор;

- изготовление двухслойных плавающих колец разделительной полости турбонасосного агрегата методом порошковой металлургии;

- автономные гидравлические испытания насосов на режимах, близких к номинальному;

- отработка новых материалов ЭП666, ЭП810ВД, ЭП741П, ЭК-74, ВТ5-1КТ, МГ-5;

- контрольно-выборочные испытания крыльчаток в водороде. Эффективность отработки жидкостных двигателей достигалась оптимальным сочетанием объема автономных доводочных испытаний и огневых испытаний двигателя, а также отработкой его работоспособности в условиях, максимально приближенных к натурным. При этом необходимо отметить, что огневые испытания большинства двигателей начинались с выхода на номинальный режим практически с первых пусков, что давало возможность выявить и устранить многие основные дефекты на начальном этапе доводки.

     Доводочные испытания двигателя РД-0120 начинались в специфических условиях, которые оказали значительное влияние на выбор оптимальной методики отработки:

     - неготовность производства к уникальным технологическим процессам;

     - отсутствие опыта отработки мощных кислородно-водородных двигателей;

     - отсутствие необходимой стендовой базы, в том числе огневых стендов, обеспечивающих испытания двигателя тягой 200 тонны.

     Указанные обстоятельства потребовали выработки особых, нетрадиционных подходов к методике отработки:

     - перенесение на этап автономной отработки ряда крупных задач, обычно решавшихся при огневых испытаниях двигателя, с проведением в первую очередь отработки тех элементов, агрегатов и процессов, по которым у конструкторов отсутствовал опыт. Так, в этой связи были созданы: новый комплекс стендов гидроиспытаний, в значительной мере обеспечивший отработку бустерных насосных агрегатов и ряда агрегатов автоматики в условиях, близких к номинальным по расходам и давлениям; разгонные стенды для проверки работоспособности крыльчаток насоса горючего и рабочих колец турбины; автономные установки для огневых испытаний системы зажигания, газогенератора и отработки процессов смесеобразования в камере; трибометрический стенд для отработки подвески; имитаторы для отработки статических и динамических уплотнений, подшипников;