Как упоминалось выше, TSA также может устанавливать дефектное по центромере состояние, вызываемое утратой сайленсинга (Ekwall et al., 1997). С учетом связи между формированием «молчащего» хроматина и когезией в центромерах представляется вероятным, что индуцированное TSA гиперацетилирование блокирует эффективную реконструкцию «молчащего» хроматина посредством RNAi и что дефектная функция центромеры воспроизводится благодаря утрате сайленсинга и, таким образом, когезии сестринских центромер (дополнительные детали см. в главе 14).
1.9. Различные механизмы сайленсинга у грибов
В первой половине этой главы мы описали, как у одного, относительно простого эукариотного организма, дробянковых дрожжей S. pombe, репортерные гены сайленсируются двумя разными типами хроматина в центромерах. Хроматин CENP-A расположен в середине центромеры и фланкирован с обеих сторон блоками гетерохроматина. Хроматин CENP-A маркирует район, над которым формируется кинетохор, предположительно прикрепляющийся к микротрубочкам. RNAi используется при формировании фланкирующего гетерохроматина для «нацеливания» некодирующих транскриптов. получаемых с внешних повторов, и поставляет модифицирующие хроматин энзимы, такие как Clr4 (H3K9-метилтрансфераза гистонов), которая создает сайты связывания для хромодоменных белков и, тем самым, прочного сайленсинга. Этот гетерохроматин участвует в центромерной функции, обеспечивая плотную физическую когезию и, возможно, способствуя организации кинетохора. Использование RNAi в формировании «молчащего» хроматина в центромерах может быть производным от ее роли в защите генома от РНК-вирусов и мобильных элементов, как это было описано у растений. В самом деле, возможно, что сами центромерные повторы являются остатками древних мобильных элементов.
В пользу этой возможности говорят ранние исследования центромер нитчатого гриба N. crassa — объекта второй половины этой главы. Хотя у пары разных грибов, представленных в этой главе, работают несомненно общие эпигенетические механизмы, ясно, что эти грибы демонстрируют серьезные различия, как это описано ниже. Например, в отличие от хорошо изученных почкующихся и дробянковых дрожжей Neurospora использует метилирование ДНК — классический эпигенетический процесс, общий для таких высших эукариот, как млекопитающие и цветковые растения Кроме того, исследования на Neurospora вскрыли несколько независимых систем сайленсинга, действующих на разных стадиях ее жизненного цикла. Первый такой механизм, названный механизмом точечных мутаций, индуцируемых повторами (RIP — repeat-induced point mutation), имеет как эпигенетические, так и генетические аспекты и несомненно служит в качестве системы защиты генома. Второй механизм, названный механизмом подавления (quelling), представляет собой основанный на RNAi механизм, который приводит к сайленсингу трансгенов и их нативных гомологов. Третий, названный мейотическим сайленсингом с помощью неспаренной ДНК (MSUD — meiotic silencing by unpaired DNA), также базируется на RNAi, но отличается от подавления (quelling) временем своего действия, мишенями и предполагаемой целью. Хотя мы все еще находимся в начале эпигенетических исследований у всех организмов, включая модельные грибы, представленные в этой главе, уже ясно, что S. pombe и N. crassa будут по-прежнему служить богатым источником информации по эпигенетическим механизмам, действующим у эукариот.
2. Neurospora crassa: история и особенности организма
Нитчатый гриб Neurospora crassa (рис. 6.9 и 6.10) впервые сделан экспериментальным организмом Доджем (Dodge) в конце 1920-х годов и примерно 10 годами позже приспособлен Бидлом и Тейтумом (Beadle и Tatum) для своих знаменитых исследований в рамках концепции «один ген — один белок», связывающих биохимию и генетику (Davis, 2000). Бидл и Тейтум выбрали Neurospora отчасти потому, что этот организм быстро растет и легко размножается на ростовых средах определенного состава, а также потому, что на Neurospora просто выполнять такие генетические манипуляции, как мутагенез, тесты на комплементацию и картирование. Neurospora, хотя и не столь широко используется, как некоторые модельные эукариоты, продолжает привлекать исследователей в силу ее умеренной сложности и потому, что она хорошо подходит для разнообразных генетических, эмбриологических [developmental] и субклеточных исследований (Borkovich et al., 2004). Neurospora оказалась особенно полезной для исследований по фотобиологии, циркадным ритмам, популяционной биологии, морфогенезу, митохондриальному импорту, репарации и рекомбинации ДНК, метилированию ДНК и другим эпигенетическим процессам.