Выбрать главу

Хотя генетика инфузорий может показаться нестандартной, лежащие в ее основе механизмы широко используются для эпигенетической регуляции у эукариот, что иллюстрирует роль РНК-интерференции в перестройках целого генома. Степень и формы этих перестроек удивительно разнообразны у разных видов инфузорий, однако одна общая черта заключается в том, что они в норме направляют элиминацию транспозоноподобных элементов и других повторяющихся последовательностей. И у Paramecium, и у Tetrahymena с генома зародышевой линии во время мейоза генерируются короткие РНК. Обнаружение этих малых РНК, тот факт, что для перестроек ДНК у Tetrahymena требуются гомологи Argonaute и Dicer, позволили осознать, что здесь действует механизм, подобный РНК-интерференции. Полагают, что малые РНК нацеливают метилирование гистона H3 по лизину 9 на гомологичные последовательности, маркируя их для элиминации. Таким образом, с механистической точки зрения перестройки ДНК у инфузорий сходны с более широко используемым РНК-направляемым формированием хроматина. Использование RNAi для элиминации перемещаемых элементов еще более подчеркивает важность этого пути как механизма защиты генома. Далее, многие эксперименты показали, что паттерны перестроек ДНК не строго детерминированы геномом зародышевой линии, но контролируются — по крайней мере отчасти — предсуществующими перестройками в родительском соматическом геноме. Отсюда следует, что геномы зародышевой линии и соматический сравниваются друг с другом в ходе ядерной дифференпировки; это сравнение опосредуется, вероятно, зависящими от гомологии взаимодействиями между РНК зародышевой линии и соматическими. Полное понимание этого процесса несомненно позволит глубже проникнуть в роль РНК в эпигенетическом программировании генома.

1. Инфузории: одноклеточные с двумя разными геномами

Инфузории, образующие монофилетическую группу, возникшую около одного миллиарда лет тому назад (Philippe et al. 2000), были среди первых одноклеточных эукариот, использованных в качестве генетических моделей. В конце 1930-х годов, когда Т.М.Соннеборн открыл типы спаривания у Paramecium aurelia (Sonnebom 1937), хромосомная теория наследственности, разработанная Т.Х.Морганом, всё еще не удовлетворяла многих исследователей, в особенности эмбриологов (исторические детали см. в главе 2). Будучи не способны представить себе, как такие статичные сущности, как гены, могут быть единственной основой наследственности, они полагали, что цитоплазма должна участвовать хотя бы только в координации действия генов (см. Harwood 1985). В то время как генетики в основном были сосредоточены на действии генов, ранний генетический анализ, выполненный Соннеборном, показал, что передачу многих наследуемых признаков нельзя было полностью объяснить менделевскими законами. Изучение инфузорий, благодаря их уникальной биологии, позволило обнаружить некоторые первые примеры цитоплазматической наследственности и продолжает обеспечивать новые возможности проникновения в эпигенетические механизмы.

Одной из наиболее заметных черт инфузорий является ядерный диморфизм. Каждая клетка содержит ядра двух типов, различающихся по структуре и функции. Диплоидные микронуклеусы являются транскрипционно «молчащими» во время вегетативного роста, но содержат геном зародышевой линии. Эти ядра претерпевают мейоз и дают гаметические ядра, которые передают менделевский геном следующему половому поколению (рис. 7.1). В противоположность этому, высокополиплоидные макронуклеусы ответственны за экспрессию генов во время вегетативного роста и таким образом управляют фенотипом клетки, но они утрачиваются во время полового развития и могут, следовательно, рассматриваться как эквивалент сомы (рис. 7.1). Число ядер каждого типа варьирует у разных видов. Например, виды P. aurelia имеют два микронуклеуса и один макронуклеус, тогда как у Tetrahymena thermophila лишь по одному ядру каждого типа.

Макро- и микронуклеусы делятся с помощью разных механизмов. Микронуклеусы делятся путем обычного закрытого митоза. Макронуклеусы, напротив, делятся с помощью все еще недостаточно изученного механизма. который не связан с образованием веретена или с видимой конденсацией не имеющих центромер соматических хромосом. После синтеза ДНК макронуклеус просто расщепляется на две приблизительно равные части. Какой-нибудь механизм, обеспечивающий равное распределение макронуклеарных хромосом в два дочерних ядра, по-видимому, отсутствует. Вместо этого, вероятно, высокий уровень плоидности (~800n у P. tetraurelia, ~45n у Т. thermophila) предотвращает летальную утрату генов на протяжении ряда вегетативных делений. Большинство видов обладают конечной продолжительностью вегетативной жизни, и клональные клеточные линии в конечном счете погибают, если не принимают участие в половом воспроизведении, прежде чем станут старыми.