Выбрать главу

Белки HAT могут ацетилировать остатки лизина на всех четырех коровых гистонах, но разные энзимы обладают разной специфичностью в отношении предпочтительного субстрата (рис. 10.3; табл. 10.1), хотя каждый энзим редко «нацелен» только на один сайт. Одно главное семейство HAT — GNAT (сокращение для Gcn5 related acetyltransferase) «нацелено» на гистон H3 как на свой основной субстрат. Второе главное семейство, семейство MYST, в качестве своего основного субстрата«нацелено» на гистон Н4. Третье главное семейство — СВР/р300 — «нацелено» и на H3, и на Н4 и является самым неразборчивым. Был выполнен структурный анализ для каталитических доменов первых двух главных семейств (GNAT и MYST), и они оказались различающимися; структура семейства СВР/р300 пока еще не раскрыта. Между прочим, каждое из этих семейств ацетилтрансфераз способно также ацетилировать негистоновые субстраты (Glozak et al., 2005).

Как обсуждалось выше, существуют три модели, описывающие роль HPTMs в регулирование структуры хроматина (рис. 10.1). Первая модель рассматривает структурные изменения в хроматине, индуцируемые прямыми влияниями HPTMs, такие как изменения заряда. В этом случае нейтрализация ацетилированием положительно заряженного лизина уменьшает силу связывания сильно основных гистонов или гистоновых «хвостов» с отрицательно заряженной ДНК и таким образом открывает сайты связывания с ДНК (Vettese-Dadey et al., 1996). Имеются также данные, все еще в пользу первой модели, что ацетилирование может декомпактизировать нуклеосомные порядки, что согласуется с ролью в открывании хроматина для активации генов (Shorgen-Knaak et al., 2006). Третья модель предполагает, что HPTMs обеспечивают поверхность связывания, чтобы белки ассоциировались с хроматином и регулировали ДНК-матричные процессы; впервые это было показано для ацетилирования. Специализированный белковый домен, названный бромодоменом и обычно обнаруживаемый в ассоциированных с хроматином белках, специфически связывается с ацетилированными лизинами (рис. 10.3) (Dhalluinet al., 1999). Бромодомены присутствуют во многих HATs, таких как Gcn5 и СВР/рЗОО. Белки с этим мотивом, когда они являются частью крупных комплексов, ассоциированных с хроматином или изменяющих его, — например, таких как зависимый от АТФ ремоделирующий комплекс, Swi/ Snf — стимулируют его связывание с хроматином (Hassan et al., 2002). Другими примерами белков, которые содержат бромодомены, обладающие специфичностью связывания с ацетилированными гистонами, являются Tafl и Bdfl в комплексе TFIID, Rsc4 в ремоделирующем комплексе Rsc и Brd2 в большом семействе бромодоменных белков.

Рис. 10.3. Охарактеризованные сайты ацетилирования гистонов

Гистоны ацетилируются главным образом по лизиновым остаткам, локализованным в аминоконцах H3 и Н4, за исключением H3K56, локализованного в глобулярном домене. Показаны белки, проявляющие специфичность связывания с ацетилированными гистонами

Существуют многочисленные ферменты HDAC, удаляющие ацетильные группы (Kurdistani and Grunstein, 2003; Yang and Seto, 2003). Они распадаются на три каталитические группы, консервативные в эволюции от S. cerevisiae до млекопитающих, которые обозначаются как энзимы типа I, типа II и типа III, или родственные Sir2. Ферменты типа I и типа II обладают близким механизмом деацетилирования, который не связан с кофактором, тогда как ферменты, родственные Sir2, требуют кофактор NAD в качестве компонента их каталитического механизма. Структура представителей всех этих трех семейств выяснена. Многие HDACs обнаруживаются в крупных мультисубъединичных комплексах, компоненты которых служат для «нацеливания» этих энзимов на гены, что ведет к репрессии транскрипции. Например, Rpd3 является частью крупного комплекса, включающего HDAC Sin3, которая взаимодействует с репрессорами, связанными с ДНК (Kurdistani and Grunstein, 2003; Yang and Seto, 2003). Rpd3 является также частью малого комплекса, «нацеленного» на открытые «рамки считывания» генов (ORFs) через ассоциацию хромодомена с H3KЗбше (дальнейшее обсуждение хромодоменов см. в разделе 4). Результатом этого оказывается деацетилирование гистонов, частично подавляющее инициацию внутренней РНК-полимеразы II (pol II), а также регулирующее различные этапы цикла транскрипции (Carrozza et al., 2005; Joshi and Struhl, 2005).

3. Фосфорилирование

Фосфорилирование — лучше всего известная РТМ, поскольку уже давно поняли, что киназы регулируют проведение сигнала с клеточной поверхности через цитоплазму и в ядро, приводя к изменениям в экспрессии генов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. К 1991 году открыли, что когда клетки стимулировали к пролиферации, происходила индукция так называемых «немедленных-ранних» [«immediate-early»] генов, и они становились транскрипционно активными и функционировали, стимулируя клеточный цикл. Эта повышенная экспрессия генов коррелирует с фосфорилированием гистона H3 (Mahadevan et al., 1991). Остаток серина 10 гистона H3 (H3S10) оказался важным сайтом фосфорилирования для транскрипции от дрожжей до человека и, по-видимому, особенно важен у Drosophila (Nowak and Corces, 2004). Были идентифицированы многие киназы, имеющие «мишенью» этот сайт, в том числе Msk1/2 и родственная ей Rsk2 у млекопитающих и SNF1 у S. cerevisiae (Sassone-Corsietal., 1999; Loetal., 2001; Soloagaetal., 2003). Исследования линкерного гистона Н1 у Tetrahymena показали, что фосфорилирование этого гистона также может влиять на контроль транскрипции.