Выбрать главу

У высших эукариот комплексы SWI/SNF весьма многочисленны; например, каждое ядро млекопитающих содержит около 25 ООО копий комплексов семейства SWI/SNF. Биохимические анализы показывают, что комплексы SWI/SNF способны открывать доступ к необычно широкому спектру сайтов в нуклеосоме по сравнению с другими АТФ-зависимыми комплексами ремоделинга хроматина (Fan et al., 2003). Например, комплексы SWI/SNF способны эффективно обеспечивать доступ к сайтам в центре мононуклеосомы, что в энергетическом отношении затруднительно, поскольку сайты в центре нуклеосомы имеют приблизительно 70 пар оснований ограниченной [constrained] нуклеосомной ДНК с каждой стороны. Вызывается ли это необычно мощной способностью использовать энергию гидролиза АТФ по сравнению с другими ремоделерами или же, вместо этого, представляет другой механизм ремоделинга, является темой текущих исследований (Kassabov et al., 2003). Комплексы SWI/SNF не обнаруживают сколько-нибудь измеримой способности равномерно распределять [to space] нуклеосомы, что является отличительным признаком других комплексов ремоделинга хроматина. Они также не обнаруживают такой же степени эффективности в «свопинге» [swapping — обмен одних элементов на другие] димеров Н2А/ Н2В, как некоторые другие комплексы ремоделинга хроматина, хотя при тестировании in vitro они способны осуществлять это и перемещать октамеры (Lorch et al., 1999). Какая из этих способностей имеет отношение к функции этих комплексов в поддержании активного состояния, еще не ясно.

У каждого исследованного вида предполагалось участие комплексов SWI/SNF в транскрипционной активации. Это семейство комплексов может быть «нацелено» на гены взаимодействиями с транскрипционными активаторами, может ремоделировать нуклеосомы, помогая в первоначальном связывании общих транскрипционных факторов и РНК-полимеразы II, и может становиться «нацеленным» на более поздних стадиях процесса активации, способствуя транскрипционной элонгации. Таким образом, комплексы SW1/SNF, по-видимому, функционируют на каждом этапе процесса транскрипционной активации, хотя, по-видимому, имеет место акцент на функцию, осуществляемую на ранних этапах, ведущих к загрузке РНК-полимеразы II. Анализ с использованием микрочипов (microarray analysis) у дрожжей показывает, что помимо этих влияний, стимулирующих активацию, комплексы SWI/SNF могут также облегчать репрессию некоторых генов (Sudarsanam et al., 2000).

Одна простая гипотеза, объясняющая эти широкие функции in vivo, заключается в том, что эти ремоделирующие комплексы изменяют структуру нуклеосом таким образом, что облегчается связывание и функционирование широкого спектра разных регуляторных факторов и комплексов. Таким образом, эффективные [potent] характеристики ремоделинга, наблюдаемые in vitro, могли бы отражать способность существенно расширять доступ к регуляторным факторам in vivo. Возможно, что комплексы SWI/SNF обладают уникальной способностью создавать широкий доступ, которая может объяснять их важное значение в поддержании активного состояния.

Каждый изученный вид обладает по крайней мере двумя разными комплексами SWI/SNF, которые оба содержат BRM или близкородственную АТФазу ремоделинга хроматина. Еще один белок trxG, OSA, обеспечивает различие между этими комплексами в том отношении, что один класс комплексов содержит OS А, а еще один эволюционно консервативный комплекс содержит белок с полибромодоменом (рис. 12.6) (Mohrmann and Verrijzer, 2005). Биохимическая функция OSA не ясна. Одна привлекательная возможность заключается в том, что он мог бы «нацеливать» комплекс SWI/SNF, в котором он находится, на специфическую группу генов.

SWI/SNF — не единственный фактор ремоделинга хроматина, имеющийся в эукариотических клетках. Идентифицированы десятки различных комплексов реиоделинга хроматина, в том числе NURF, NURD, ACF и CHRAC (Vignali et al., 2000). Эти комплексы можно подразделить на несколько основных групп на основе идентичностей их АТФазных субъединиц. Комплексы SWI/SNF содержат АТФазы, родственные SWI2/SNF2; комплексы ISWI (например, NURF, CHRAC и ACF) содержат АТФазы, родственные Imitation-SWI (ISWI); наконец, комплексы CHD (например, NURD) содержат АТФазы, родственные CHD1 и Mi2.

Недавние исследования позволили предположить участие имеющегося у Drosophila kismet (kis) — члена семейства CHD факторов ремоделинга хроматина — в поддержании активного состояния. Подобно brm, mor и osa, kis был идентифицирован в ходе скрининга на экстрагенные супрессоры Рс; это позволяло предполагать, что он действует антагонистически по отношению к белкам PcG и поддерживает активные состояния НОХ-транскрипции (Kennison and Tamkun, 1988). Генетические исследования показали, что kis необходим как для сегментации, так и для поддержания HOX-транскрипции в ходе развития Drosophila (Daubresse et al., 1999; Therrien et al., 2000). Консервативные домены вне АТФазного домена (в том числе бромодомены и хромодомены) вносят свой вклад в функциональную специфичность ремоделирующих хроматин факторов, опосредуя взаимодействия с нуклеосомами или другими белками. BRM и другие АТФазные субъединицы комплексов SW1/SNF содержат единственный бромодомен (белковый мотив, ассоциированный со связыванием определенных ацетилированных гистонов), тогда как KIS-L содержит два хромодомена (белковых мотива, связывающихся с определенными метилированными гистонами) и является, следовательно, более похожим на Mi2 и другие ремоделирующие хроматин факторы, члены семейства CDH. Хотя большие размеры KIS-L (~575 кДа) затруднили биохимический анализ этого белка, его последовательность убедительно свидетельствует о том, что он активирует транскрипцию, ремоделируя хроматин