Min J., Zhang Y., and Xu R.M., 2003. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17: 1823-1828.
Mohrmann L. and Verrijzer C.P., 2005. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681: 59-73.
Muyrers-Chen I., Rozovskaia Т., Lee N., Kersey J.H., Nakamura Т., Canaani E., and Paro R., 2004. Expression of leukemic MLL fusion proteins in Drosophila affects cell cycle control and chromosome morphology. Oncogene 23: 8639-8648.
Petruk S., Sedkov Y., Smith S., Tillib S., Kraevski V, Nakamura Т., Canaani E„ Croce C.M., and Mazo A., 2001. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294: 1331-1334.
Phelan M.L., Sif S., Narlikar G.J., and Kingston R.E., 1999. Reconstitution of a core chromatin remodeling complex from SWI/ SNF subunits. Mol. Celiy. 247-253.
Pokholok D.K., Harbison C.T., Levine S., Cole М., Hannett N.M., Lee T.I., Bell G.W., Walker K., Rolfe P.A., Herbolsheimer E., et al., 2005. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517-527.
Polach K.J. and Widom J., 1995. Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation. J. Mol. Biol. 254: 130-149.
Rea S., Eisenhaber E, O’Carroll D., Strahl B.D., Sun Z.W., Schmid М., Opravil S., Mechtler K., Ponting C.P., AllisC.D., and Jenuwein Т., 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599.
Ringrose L. and Paro R., 2004. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet. 38: 413-443.
Roguev A.,. Schaft D., Shevchenko A., Pijnappel W.W., Wilm М., Aasland R., and Stewart A.F., 2001. The Saccharomyces cerevisiae Setl complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J., 20: 7137-7148.
Saha A., Wittmeyer J., and Cairns B.R., 2005. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12: 747-755.
Santos-Rosa H., Schneider R., Bannister A. J., Sherriff J., Bernstein B.E., Emre N.C., Schreiber S.L., Mellor J., and Kouzandes Т., 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411.
Simon J., 1995. Locking in stable states of gene expression: Transcriptional control during Drosophila development. Curr. Opin. Cell Biol. 7: 376-385.
Simon J.A. and Tamkun J.W., 2002. Programming off and on states in chromatin: Mechanisms of Polycomb and trithorax group complexes. Curr. Opin. Genet. Dev. 12: 210—218.
Srinivasan S., Armstrong J.A., Deuring R., Dahlsveen I.K., McNeill H., and Tamkun J.W., 2005. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132: 1623-1635.
Strober B.E., Dunaief J.L., Guha S., and Goff S.P., 1996. Functional interactions between the hBRM/hBRGl transcriptional activators and the pRB family of proteins. Mol. Cell. Biol 16: 1576-1583.
Sudarsanam P., Iyer V.R., Brown P.O., and Winston F., 2000. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 97: 3364-3369.
Tamkun J.W., Deuring R., Scott M.P., Kissinger М., Pattatucci A.M., Kaufman T.C., and Kennison J.A., 1992. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561-572.
Therrien М., Morrison D.K., Wong A.М., and Rubin G.M., 2000. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics 156: 1231-1242.
Versteege I., Sevenet N., Lange J.. Rousseau-Merck M.F., Ambros P., Handgretinger R., Aurias A., and Delattre O., 1998. Truncating mutations of hSNF5/INIl in aggressive paediatric cancer. Nature 394: 203-206.
Vignali М., Hassan A.H., Neely K.E., and Workman J.L., 2000. ATP-dependent chromatin-remodeling complexes. Mol Cell Biol., 20: 1899-1910.
Wang W., Cote J., Xue Y., Zhou S., Khavari P.A., Biggar S.R., Muchardt C., Kalpana G.V., Goff S.P., Yaniv М., et al., 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15: 5370-5382.
White house I., Stockdale G., Flaus A., Szczelkun M.D., and Owen-Hughes Т., 2003. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23: 1935-1945.
Wysocka J., Swigut Т., Milne T.A., Dou Y., Zhang X., Burlingame A.L., RoederR.G., Brivanlou A.H., and Allis C.D., 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859-872.
Yokoyama A., Wang Z., Wysocka J., Sanyal М., Aufiero D.J., Kitabayashi I., Herr W., and Cleary M.L., 2004. Leukemia protooncoprotein MLL forms a SET 1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell Biol. 24: 5639-5649.
Yu B.D., Hanson R.D., Hess J.L., Homing S.E., and Korsmeyer S.J., 1998. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. 95: 10632-10636.
Yu B.D., Hess J.L., Horning S.E., Brown G.A., and Korsmeyer S.J., 1995. Altered Hox expression and segmental identity in Mil-mutant mice. Nature 378: 505-508.
Глава 13. Варианты гистонов и эпигенетика
Steven Henikoff1 и Mitchell Smith2
1 Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle,
Washington 98169-1024 department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
Содержание:
Общее резюме
Гистоны упаковывают ДНК, собираясь в коровые частицы нуклеосом, тогда как ДНК оборачивается вокруг них. На протяжении эволюционного времени белки с доменом «гистонового сворачивания» (histone fold domain proteins) диверсифицировались от своих предков, представленных у архей, в четыре различные субъединицы, которые составляют знакомый октамер эукариотической нуклеосомы. Результатом дальнейшей диверсификации гистонов в разные варианты оказывается дифференцировка хроматина, могущая иметь эпигенетические следствия. Исследования эволюции, структуры и метаболизма вариантов гистонов обеспечивают основу для понимания участия хроматина в важных клеточных процессах и эпигенетической памяти.