Ранние исследования позволяли предполагать, что нуклеотидная последовательность ДНК играет преобладающую роль в определении сайтов и функций хромосомных элементов, необходимых для собственно митоза и мейоза, таких как «ориджины» репликации ДНК, сайты прикрепления веретена (центромеры и кинетохоры), концы хромосом (теломеры) и сайты мейотического спаривания. Однако в последнее десятилетие мы пришли к пониманию того, что эпигенетические механизмы могут регулировать многие ключевые функции, необходимые для стабильности генома наследования хромосом. К ним относятся роли в инициации репликации ДНК, репарации и рекомбинации ДНК, защиты концов хромосом (теломеры), движения хромосом (центромеры) и сегрегации гомологичных хромосом в мейозе. На первый взгляд, эпигенетическая регуляция оказывается в противоречии с тем фактом, что эти хромосомные функции существенны для изменчивости клеток и организмов, что означает, что они должны быть «зашиты» в нуклеотидной последовательности ДНК. Однако при взгляде сквозь «очки эволюции» эпигенетическая «пластичность» хромосом в ходе митоза и мейоза оказывается важной для компенсации тех типов изменений нуклеотидной последовательности и хромосомных перестроек, которые связаны с видообразованием. Понимание молекулярных основ эпигенетического регулирования наследственности является фундаментальным для выяснения этих основных биологических процессов и для диагностики и лечения болезней человека.
1. Введение
1.1. Как осуществляется хромосомная наследственность?
Митоз является основным типом клеточного деления, который производит идентичные, диплоидные дочерние клетки и используется соматическими клетками и премейотическими зародышевыми клетками (рис. 14.1а). В митотическом клеточном цикле выделяют четыре фазы, называемые Gj (gap 1, стадия «покоя» после митоза), S (synthesis — репликация ДНК и экспрессия генов), G2 (gap 2, «покой» после S, подготовка к митозу) и М (mitosis, состоящий из профазы, метафазы, анафазы и телофазы). Во время S-фазы ДНК реплицируется, и дуплицированные сестринские хроматиды удерживаются вместе за счет установления когезии. В начале митоза хромосомы конденсируются, а гистон H3 становится фосфорилированным по Ser-10 (H3S10ph) (глава 10). Кроме того, у большинства организмов единичный сайт (центромера) на каждый сестринской хроматиде формирует структуру, называемую кинетохором, которая опосредует прикрепление микротрубочки веретена и служит в качестве «контрольной точки» (checkpoint) клеточного цикла (рис. 14.1а). В прометафазе пары сестринских хроматид собираются в метафазную пластинку и в анафазе расходятся к полюсам. Эти движения совершаются как за счет активности связанных с кинетохором микротрубочковых моторов (кинезинов и динеинов) и регуляции сборки и разборки микротрубочек, а также требуют разрушения когезии сестринских хроматид при переходе из метафазы к анафазе.
Мейоз происходит только в зародышевых клетках и характеризуется одним раундом репликации, за которым следуют два деления (мейоз 1 и И, рис. 14.16); это дает гаплоидные яйцеклетки в женской зародышевой линии и гаплоидные спермин в мужской зародышевой линии многоклеточных животных, а не диплоидные дочерние клетки. В мейозе I реплицированные гомологи спариваются и расходятся вместе. Сестринские хроматиды каждого гомолога не расходятся друг с другом до мейоза II. Для нормальной сегрегации во время мейоза требуется частая рекомбинация между гомологами, а также специальная когезия в центромерном районе, которая обеспечивает ассоциацию сестринских хроматид во время мейоза I (Watanabe, 2005).
1.2. Какие элементы требуются для хромосомной наследственности?
И митотические, и мейотические клеточные деления нуждаются в активности специфических хромосомных элементов и связывающихся белков для выполнения точной дупликации генома и расхождения хромосом (рис. 14.2).
Рис. 14.1. Стадии митоза и мейоза
(а) Микрофотографии клеток Drosophila показывают поведение хромосом (синий цвет, описание см. ниже), микротрубочек (зеленый цвет) и центромер (красный цвет) в интерфазе и митозе, (б) Поведение хромосом показано для профазы мейоза I у кукурузы; это стадия, на которой происходят спаривание гомологов, синапсис и рекомбинация (микрофотографии предоставлены Hank Bass и Shaun Murphy, Университет штата Флорида). Ключевые функции хромосом на каждой стадии показаны внизу (синим шрифтом). Впоследствии, в анафазе мейоза 1, гомологи расходятся к противоположным полюсам, завершая редукционное деление. Сестринские хроматиды разделяются лишь во время мейоза II (рис. 14.9)