Выбрать главу

Другие наблюдения заставляют предполагать главную роль эпигенетических механизмов в детерминации идентичности центромер и формировании кинетохоров у многоклеточных эукариот. Во-первых, нуклеотидные последовательности ДНК, в норме ассоциированные с центромерами, не достаточны для функционирования. Например, только подгруппа гетерохроматиновых сателлитных последовательностей мыши и человека связана с центромерной функцией (Lam et al., 2006). Кроме того, в функциональных хромосомах с двумя участками центромерных сателлитов (дицентрики), наблюдаемых у мух и у человека, один из этих участков теряет способность формировать кинетохор (Sullivan and Willard, 1998). Во-вторых, центромерные последовательности не являются необходимыми для формирования кинетохора, поскольку нецентромерная ДНК может приобретать и надежно воспроизводить центромерную функцию благодаря процессу, известному как «формирование неоцентромеры» (рис. 14.5а). У человека были идентифицированы многочисленные функциональные неоцентромеры, и анализ нуклеотидной последовательности показал, что эти новые районы формирования кинетохоров не приобрели сателлитных ДНК. Однако участки, фланкирующие новый кинетохор, приобрели эпигенетические свойства, сравнимые с соответствующими районами в эндогенных центромерах (т.е. перицентрическом хроматине), такими как метилирование H3JT9 и связывание НР1 (Lo et al., 2001).

Хотя механизм формирования неоцентромер у человека не известен, в модельной системе неоцентромеры были созданы экспериментально. У Drosophila неопентромеры получаются из минихромосом, когда помещаются рядом нецентромерная ДНК и эндогенная центромера (рис. 14.56) (Maggert and Karpen, 2001). Таким образом, у Drosophila для активации неоцентромеры требуется близость к функциональной центромере, заставляя предполагать, что одним из механизмов приобретения центромеры является распространение центромерных белков в с/^-конфигурации на соседние, нецентромерные участки. Коль скоро это распространение произошло, центромерная функция затем воспроизводится в этом новом сайте эпигенетически. Интересно, что формирование неоцентромеры подавляется, когда между эндогенной центромерой и участком формирования неоцентромеры присутствует гетерохроматин, заставляя предполагать, что в определении величины центромеры играют роль дополнительные эпигенетические механизмы.

Наконец, признаком эволюции являются хромосомные перестройки. Эти изменения сопровождаются приобретением, утратой и перемещениями центромер по отношению к нуклеотидным последовательностям генома (Ferreri et al., 2005). Такую пластичность легче всего объяснить, если идентичность центромеры определяется эпигенетически, как это описано в разделе 3.5.

3.3. Необычный состав центромерного хроматина

Данные об эпигенетическом регулировании центромерной идентичности и воспроизведении указывают на вероятность того, что ключевыми детерминантами являются структура и состав хроматина, а не первичные последовательности ДНК. Здесь мы обсудим различные компоненты и структуры, обнаруживаемые в хроматине CEN, а также удивительное наблюдение, показывающее, что эти свойства консервативны у далеко отстоящих друг от друга эукариот.

Рис. 14.5. Формирование неоцентромер у человека и мух (а)

Хромосомы человека, несущие неоцентромеры, которые демонстрируют центромерную функцию и формирование кинтетохора в отсутствие центромерной ДНК, обычно связаны с крупными перестройками (Amor and Choo, 2002). В этом примере происходящая от хромосомы 10 неоцентромера (mar(del)10), структура которой указывает на формирование посредством большой интерстициальной делеции. удалившей эндогенную центромеру (серые пунктирные линии). Mar(del) 10 была открыта у индивидуума, в кариотипе которого была также кольцевая хромосома (ring(del)10, не показана), содержавшая ДНК из делегированного участка Последовательность событий для неоцентромер человека неясна; формирование неоцентромеры могло бы происходить вначале, давая дицентрическую хромосому, которая впоследствии подвергается перестройкам, или же формирование неоцентромеры могло бы происходить после делеции эндогенной центромеры, (б) У мух неоцентромеры могут создаваться экспериментально из минихромосомы, охарактеризованной на молекулярном уровне. Фрагмент эухроматина величиной 320 т.п.н. и теломерный хроматин, не содержащий центромерной ДНК. можно отделить от остальной минихромосомы, используя облучение. Этот фрагмент, который должен бы быть «ацентрическим», может стать функциональной неоцентромерой, которая надежно воспроизводится в митозе и мейозе и содержит белки центромеры и кинетохора, в норме ограниченные эндогенной центромерой (Blower and Karpen, 2001). Однако для формирования неоцентромеры требуется близость к эндогенной неоцентромере (420 т.п.н.), как в инверсионном деривате ?238; более того, формирование неоцентромеры не происходит по обе стороны от центромеры, когда присутствует перицентрический гетерохроматин (Maggert and Karpen, 2001) Эти результаты заставляют предполагать, что формирование неоцентромеры происходит через эпигенетическое распространение центромерного хроматина в соседний эухроматин, за которым следует эпигенетическое воспроизведение центромерной идентичности и функции. Блокирование этого процесса гетерохроматином согласуется с наблюдением, что сверхэкспрессированная CENP-A включается эктопически в эухроматин. но не в гетерохроматин (Heun et al. 2006), и позволяет предполагать, что протяженность центромерного хроматина определяется двумя эпигенетическими процессами: загрузкой и распространением CENP-A и формированием — блокированием гетерохроматина