Brockdorff N., Ashworth A., Kay G.F., McCabe V.M., Norris D.P., Cooper P.J., Swift S., and Rastan S., 1992. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus Cell 71: 515–526.
Brown C.J. and Willard H.F., 1994. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368: 154–156.
Brown C.J., Hendnch B.D., Rupert J.L., Lafreniere R.G., Xing Y., Lawrence J., and Willard H.E., 1992. The human XISTgene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71: 527–542.
Carrel L. and Willard H.E, 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400–404.
Cattanach B.M., and Isaacson J.H., 1967. Controlling elements in the mouse X chromosome. Genetics 57: 331–346.
Chadwick B.R and Willard H.E, 2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc. Natl. Acad. Sci. 101: 17450-17455.
Clerc R and Avner P., 1998. Role of the region 3’ to Xist exon 6 in the counting process ofX-chromosome inactivation. Nat. Genet., 19: 249–253.
Charlesworth B., 1996. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6: 149–162.
Costanzi C. and Pehrson J.R., 1998. Histone macroH2A is concentrated in the inactive X chromosome of female mammals. Nature 393: 599–601.
Csankovszki G., Nagy A., and Jaenisch R., 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol. 153: 773–784.
Csankovszki G., Panning B., Bates B., Pehrson J.R., and Jaenisch R., 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22: 323-324
Davidson R.G., Nitowsky H.M., and Childs B., 1963. Demonstration of two populations of cells in the human female heterozygous for glucoses-phosphate dehydrogenase variants. Proc. Natl. Acad. Sci. 50: 481–485.
de Napoles M.. Mermoud J.E., Wakao R., Tang Y.A., Endoh M., Appanah R., Nesterova T.B., Silva J., Otte A.P., Vidal M., et al. Polycomb group proteins RinglA/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 1: 663–676.
Duthie S.M., Nesterova T.B., Formstone E.J., Keohane A.M., Turner B.M., Zakian S.M., and Brockdorf F.N., 1999. Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum. Mot Genet. 8: 195–204.
Eggan K.,Akutsu H.. Hochedlinger K., Rideout W., III. Yanagimachi R., and Jaenisch R., 2000. X-chromosome inactivation in cloned mouse embryos. Science 290: 1578–1581.
Eils R., Dietzel S., Bertin E., Schrock E., and Speicher M.R., 1996. Three dimensional reconstruction of painted human interphase chromosomes: Active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell. Biol. 135: 1427–1440.
Epstein C.J., Smith S., Travis B., and Tucker G., 1978. BothX chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274: 500–502.
Gartler S.M. and Riggs A.D., 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17: 155–190.
Grant M., Zuccotti M., and Monk M., 1992. Methylation of CpG sites of two X-linked genes coincides with X-inactivation in the female mouse embryo but not in the germ line. Nat. Genet. 2: 161–166.
Graves J.A., 1996. Mammals that break the rules: Genetics of marsupials and monotremes. Annu. Rev. Genet. 30: 233–260.
Heard E., Mongelard E., Arnauld D., Chureau C., Vourch C., and Avner P., 1999. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc. Natl. Acad. Sci. 96: 6841–6846.
Heard E., Rougeulle C., Amaud D., Avner P., Allis C.D., and Spector D.L., 2001. Methylation of histone H3 at lys-9 is an early mark on the X chromosome during X inactivation. Cell 107: 727–738.
Huynh K.D. and Lee J.T, 2003. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426: 857–862.
Jeppesen P. and Turner B.M., 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation: A cytogenetic marker for gene expression. Cell 74: 281–289.
Keohane A.M., Belyaev N.D., Lavender J.S., O’Neill L.P., and Turner B.M., 1996. X-inactivation and H4 acetylation in embryonic stem cells. Dev. Biol. 180: 618–630.
LachnerM., O’Sullivan R.J., andJenuwein T., 2003. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116: 2117–2124.
Lee J.T., 2000. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103: 17–27.
Lee J.T. and Lu N.E., 1999. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99: 47–57.
Lee J.T., DavidowL.S., andWarshawsky D., 1999. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21: 400–404.
Lee J.T., Strauss W.M., Dausman J.A., and Jaenisch R., 1996. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86: 83–94.
Lock L.E., Takagi N., and Martin G.R., 1987. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48: 39–46.
Lyon M.F., 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190: 372–373.
Lyon M.F., 1998. X-chromosome inactivation: A repeat hypothesis. Cytogenet. Cell Genet. 80: 133–137.
Lyon M.F., 2003. The Lyon and the LINE hypothesis. Semin. Cell Dev. Biol. 14: 313–318.
Maison C., Bailly D., Peters A.H., Quivy J.P., Roche D., Taddei A., Lachner M., Jenuwein T., and Almouzni G., 2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30: 329–334.
Mak W., Nesterova T.B., de Napoles M., Appanah R., Yamanaka S., Otte A. P., and Brockdorff N., 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303: 666–669.
Marin I., Siegal M.L., and Baker B.S., 2000. The evolution of dosage-compensation mechanisms. BioEssays 22: 1106–1114.