Выбрать главу

White W.M., Willard H.F., Van Dyke D.L., and Wolff D.J., 1998. The spreading of X inactivation into autosomal material of an X; auto-some translocation: Evidence for a difference between autosomal and X chromosomal DNA. Am. J. Hum. Genet. 63: 20–28.

Wutz A. and Jaenisch R., 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation Mol. Cell 5: 695–705.

Wutz A., Rasmussen T.P., and Jaenisch R., 2002 Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30: 167–174.

Глава 18. Метилирование ДНК у млекопитающих

En Li1 и Adrian Bird2

1Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts 02139

2The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH93JR, United Kingdom

Общее резюме

ДНК позвоночных животных ковалентно модифицируется метилированием цитозина (основания) в динуклеотидной последовательности 5’CpG3. CpG — это сокращение для цитозина и гуанина, разделенных фосфатом, связывающим эти два нуклеотида вместе в ДНК. У млекопитающих паттерны метилирования устанавливаются в ходе эмбрионального развития и поддерживаются механизмом копирования при делении клеток. Наследуемость паттернов метилирования ДНК делает эпигенетическую маркировку стабильной в ряду многих клеточных делений и, следовательно, составляет одну из форм клеточной памяти.

Молекулярные и генетические исследования показали, что метилирование цитозина в ДНК связано с сайленсингом гена и играет важную роль в процессах развития, таких как инактивация Х-хромосомы и геномный импринтинг. Метальная часть метилцитозина находится в большой бороздке спирали ДНК, где многие связывающиеся с ДНК белки могут контактировать с ДНК; она осуществляет свое влияние путем притягивания или отталкивания связывающихся с ДНК белков. Было показано, что семейство белков, способных связываться с ДНК, содержащей метилированные динуклеотиды CpG и известных как метил-CpG-связывающиеся белки, рекрутирует репрессорные комплексы к метилированным промоторным участкам и тем самым вносит определенный вклад в транскрипционный сайленсинг. Некоторые транскрипционные факторы связываются с содержащими CpG нуклеотидными последовательностями ДНК только тогда, когда они не метилированы. В этих случаях метилирование CpG может препятствовать связыванию белка и влияет на транскрипцию.

Удаление генетическими методами генов, кодирующих ДНК-метилтрансферазы или белки, связывающиеся с метил-CpG, дало возможность выявить разнообразные функции метилирования ДНК в развитии млекопитающих. Установление нормальных паттернов метилирования генома играет существенную роль в эмбриональном развитии. Метилирование ДНК необходимо для поддержания дифференциальной экспрессии отцовской и материнской копий генов, подверженных геномному импринтингу, и для стабильного сайленсинга генов на неактивной Х-хромосоме. Кроме того, от метилирования ДНК зависят стабильная транскрипционная репрессия провирусных геномов и эндогенных ретротранспозонов. Мы знаем примеры участия метилирования ДНК в установлении и поддержании тканеспецифичных паттернов экспрессии генов в ходе развития. Имеются также данные о том, что отсутствие метилирования ДНК уменьшает надежность поддержания числа хромосом, что приводит к повышенной частоте их утери.

Значение метилирования ДНК для клиники впервые стало очевидным в связи с раковыми заболеваниями. Пониженные уровни метилирования ДНК, достигнутые либо благодаря генетическим манипуляциям, либо воздействием ингибиторов ДНК-метилтрансферазы, приводят к подавлению некоторых форм опухолей у мышей. Напротив, образование других типов опухолей усиливается при низких уровнях метилирования ДНК Несколько других заболеваний человека удалось связать с мутациями генов, кодирующих критичные компоненты механизма метилирования ДНК. Мутации ДНК-метилтрансферазы Dnmt3b приводят к иммунодефициту, а мутации белка МеСР2, связывющегося с метил-CpG, вызывают серьезное нейрологическое расстройство, известное как синдром Ретта. Совершенно очевидно, что целостность системы метилирования ДНК имеет первостепенное значение для здоровья млекопитающих.

Хотя паттерны метилирования ДНК могут передаваться от клетки к клетке, они не являются постоянными. В действительности на пртяжении жизни особи могут происходить изменения в паттернах метилирования ДНК. Некоторые изменения могут быть физиологической реакцией на изменения внешней среды, тогда как другие могут быть связаны с патологическим процессом, например онкогенной трансформацией или клеточным старением. Однако внутренние и внешние факторы, индуцирующие изменения в метилировании ДНК, остаются, в основном, неизвестными. Исследование метилирования ДНК при заболеваниях человека представляет новую важную область медицины и несомненно внесет свой вклад в наше понимание влияния эпигенетических модификаций на жизнь человека.