Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., and Meaney M.J., 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847–854.
Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., LamW.L., and Schubeler D.. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37: 853–862.
Wigler M.H., 1981. The inheritance of methylation patterns in vertebrates. Cell 24: 285–286.
Wolf S.E., Jolly D.J., Lunnen K.D., Friedman T., and Migeon B.R., 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X-chromosome: Implications for X-chromosome inactivation. Proc. Natl. Acad. Sci. 81: 2806–2810.
Yoon H.G.. Chan D.W., Reynolds A.B.. Qin J.. and Wong J.. 2003. N-CoR mediates DNA methylation-dependent repression through a methyl CpG-binding protein Kaiso. Mol. Cell 12: 723–734.
Zilberman D., Cao X., and Jacobsen S.E., 2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299: 716–719.
Глава 19. Геномный импринтинг у млекопитающих
Denise P. Barlow1 и Marisa S. Bartolomei2
1СеММ Research Center for Molecular Medicine of the Austrian Academy of Sciences, Institute of Genetics, Max Perutz Laboratories, A-1030 Vienna, Austria
2Departament of Cell & Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104-6148
Общее резюме
Млекопитающие являются диплоидными организмами, чьи клетки обладают двумя совмещенными [matched] наборами хромосом, один из которых унаследован от матери, а другой — от отца. Таким образом, млекопитающие обладают двумя копиями каждого гена. В норме и материнская, и отцовская копии каждого гена имеют одну и ту же возможность быть активной в любой клетке. Геномный импринтинг — это эпигенетический механизм, который изменяет эту потенцию, потому что он ограничивает экспрессию гена одной из двух родительских хромосом. Это явление демонстрируют лишь несколько сотен из примерно 25 ООО генов в нашем геноме, а большинство экспрессируются в равной степени, будучи унаследованы от любого из родителей. Геномный импринтинг затрагивает и мужское, и женское потомство и поэтому является следствием родительского наследования, а не пола. Как пример того, что под этим подразумевается, можно сказать, что импринтированный ген, активный на хромосоме, унаследованной от матери, будет активным на материнской хромосоме и «молчащим» на отцовской хромосоме у всех самцов и самок.
Определение геномного импринтинга ограничено здесь «специфичной, в отношении родителя, экспрессией генов в диплоидных клетках». Таким образом, диплоидные клетки, содержащие по две родительские копии всех генов, будут экспрессировать только одну родительскую копию импринтированного гена и сайленсировать другую родительскую копию. Напротив, неимпринтированные гены будут экспрессироваться в диплоидной клетке обеими родительскими копиями. Для понимания концепции импринтированных генов важно различать импринтированные гены и гены, демонстрирующие кажущуюся специфичную в отношении родителя экспрессию из-за неравного родительского генетического вклада в зародыш. Примерами неравного родительского генетического вклада являются гены, сцепленные с Y-хромосомой и присутствующие только у самцов, гены, избежавшие Х-инактивации у самок, митохондриальные гены, привносимые в основном матерью, и иРНК и белки, присутствующие в цитоплазме только спермия или только яйцеклетки.
Многие особенности геномного импринтинга у млекопитающих делают его весьма привлекательной биологической проблемой в постгеномную эпоху Например, он дает ключ к пониманию возможной эволюционной реакции на родительский конфликт, к адаптации материнского родителя к внутренней воспроизводительной системе; возможно, он дает также хотя бы некоторое представление о способах, которыми геном млекопитающих защищает себя от вторжения [чужеродных] нуклеотидных последовательностей ДНК. Геномный импринтинг — явление, бросающее вызов интеллекту не в последнюю очередь потому, что он ставит вопрос о том, почему у диплоидного организма развивается система сайленсинга, отвергающая преимущества диплоидного состояния. Возможно, самым интригующим является то обстоятельство, что выборка генов, подверженных геномному импринтингу, в основном кодирует факторы, регулирующие эмбриональный и неонатальный рост. Таким образом, кажется весьма вероятным, что геномный импринтинг развился для того, чтобы играть специфическую роль в репродукции млекопитающих.
На этом этапе наших знаний геномный импринтинг не выглядит широкораспространенным в четырех эукариотных царствах, включающих протистов, грибы, растения и животных. Однако он существует, возможно в родственной форме, у двух групп беспозвоночных — у членистоногих Coccidae и Sciaridae, а также в эндосперме некоторых семенных растений, таких как кукуруза и Arabidopsis. Такое распределение показывает, что геномный импринтинг возникал независимо по меньшей мере трижды в эволюции живого. Удивительно, что, несмотря на эту предсказываемую независимую эволюцию геномного импринтинга, вырисовываются некоторые черты сходства в механизмах импринтинга. Весьма вероятно, что это отражает консерватизм базовых эпигенетических регуляторных механизмов, лежащих в основе как геномного импринтинга, так и нормального регулирования генов.