1. Исторический обзор
Наличие геномного импринтинга у млекопитающих имеет существенное медицинское, социальное и интеллектуальное значение в плане (1) клиники генетических признаков и заболеваний, (2) возможности контролировать репродукцию человека и животных с помощью вспомогательных репродуктивных технологий и (3) прогресса биотехнологии и постгеномных медицинских исследований. При любом современном обсуждении генетических проблем, будь то исследования или медицина, обязательно необходимо считаться с тем, обнаруживает ли данный ген двуродительский (т. е. диплоидный) характер экспрессии или же подвержен геномному импринтингу и демонстрирует специфичную в отношении родителя (т. е. гаплоидную) экспрессию. Как это ни удивительно, после того как было однозначно показано, что три гена у мышей обнаруживают специфичную в отношении родителя экспрессию, широкого признания существование и значение геномного импринтинга не получили вплоть до начала 1990-х годов, несмотря на его важность для здоровья и благополучия человека.
Однако специфичное в отношении родителя поведение целых хромосом уже наблюдали в цитогенетических исследованиях хромосом у членистоногих еще в 1930-е годы (Chandra and Nanjundiah, 1990). Интересно, что термин «хромосомный импринтинг» впервые был предложен для описания элиминации хромосом отцовского происхождения у некоторых видов артропод (Crouse et al., 1971). Был также замечен хромосомный импринтинг Х-хромосомы млекопитающих, который приводит к инактивации одной из двух Х-хромосом, а именно хромосомы отцовского происхождения, во всех клетках самок сумчатых и в экстраэмбриональных тканях мыши (Cooper et al., 1971). В тот же самый период классические генетики получали у мышей мутантов с хромосомными транслокациями, которые заложили фундамент для наблюдений экспрессии импринтированных генов. Некоторые из этих «транслокационных» мышей, первоначально использовавшихся для картирования генов на хромосомах, демонстрировали специфичный в отношении родителя фенотип, когда определенные хромосомные участки были унаследованы как дупликации хромосомы одного родителя в отсутствие хромосомы другого родителя (что известно как однородительскя дисомия, или UPD, рис. 19.1). Эти результаты указывали на возможность того, «что для нормального развития мыши важна гаплоидная экспрессия определенных материнских или отцовских генов» (Searle and Beechey, 1978) В то же самое время другие генетики использовали необычного мутанта мыши, известного как “Hairpin-tail”, который имел большую делецию хромосомы 17, для того чтобы однозначно опровергнуть основной принцип генетики, согласно которому «организмы, гетерозиготные по данному локусу фенотипически идентичны независимо от того, какая гамета внесла в генотип ту или иную аллель» (Johnson, 1974). Вместо этого потомство, получившее делецию Hairpin-tail от матери, имело увеличенные размеры и погибало в середине эмбрионального развития, тогда как передача генетически идентичной хромосомы от отца давала жизнеспособных и фертильных мышей (рис. 19.1). В ретроспективном плане можно отметить, что несмотря на существование инактивации импринтированной Х-хромосомы у млекопитающих пользовавшаяся наибольшим вниманием трактовка этих экспериментов с генетическими транслокациями и делениями сводилась к тому, что гены на этих аутосомах в гаплоидном яйце или спермии действовали главным образом, чтобы модифицировать белки, используемые позже в эмбриональном развитии.
Рис. 19.1. Модели (мышь) для исследования геномного импринтинга, позволяющие различать материнскую и отцовскую хромосомы
Млекопитающие являются диплоидными и наследуют полный хромосомный набор от матери и от отца. Однако можно создать мышей, которые (1) наследуют обе копии хромосомной пары от одного родителя и ни одной от другого (явление, известное как однородительская дисомия, или UPD); (2) наследуют частичную хромосомную делецию от одного родителя и хромосому дикого типа от другого; (3) наследуют хромосомы, несущие однонуклеотидные полиморфизмы (известные как SNPs) от одного родителя и хромосому дикого типа от другого. Потомки с UDPs или делениями склонны обнаруживать летальные фенотипы, тогда как SNPs обычно обеспечивают получение жизнеспособного потомства: (mat) — материнский; (запрещающий знак) — импринт