3. Ключевые открытия в области геномного импринтинга
3.1. Импринтированные гены контролируют эмбриональный и неонатальный рост
Какова же функция геномного импринтинга у млекопитающих? Одним из способов ответить на этот вопрос было бы определение функции известных импринтированных генов in vivo. Современные технологии позволяют сейчас определять функционирование генов у мышей путем индукции мутаций в нуклеотидной последовательности гена, чтобы нарушить его функцию. С помощью этой техники «гомологичной рекомбинации» были определены функции 26 из 78 известных импринтированных генов (оригинальные ссылки см. по адресу http://www.mgu.har.mrc.ac.uk/research/imprinting/function.html). В табл. 19.1 эти гены перечисляются соответственно их функции в развитии мышей и их экспрессии с материнской или отцовской аллели. Самая большая категория на сегодня охватывает импринтированные гены, которые влияют на рост эмбриона, или плаценту, или на новорожденного, полностью зависящего от материнского молока. В этой категории приблизительно половина — это отцовски-экспрессируемые импринтированные гены, которые функционируют как ростовые промоторы (как показывает задержка роста у эмбрионов, дефектных по этому гену). Другая половина — это матерински — экспрессируемые импринтированные гены, которые функционируют как ростовые репрессоры (что демонстрируется усилением роста у эмбрионов, дефектных по этому гену). Следующая по величине категория включает гены, не вызывающие никаких очевидных дефектов в эмбриональном развитии; за нею следует категория с поведенческими или нейрологическими дефектами. Остающиеся три испытанных гена обладают разнообразными, внешне не связанными дефектами. Эти результаты являются, на одном уровне, разочаровывающими, поскольку они не не позволили идентифицировать одну какую-нибудь функцию для всех импринтированных генов. Однако все же может быть свет в конце туннеля, потому что эти результаты говорят нам, что более чем 50 % импринтированных генов функционируют как регуляторы эмбрионального или неонатального роста. Более интересно, что способность регулировать рост оказывается четко разделенной: матерински-экспрессируемые регулирующие рост гены действуют как репрессоры роста потомства, тогда как отцовски-экспрессируемые гены в этой категории действуют, усиливая рост, 20 % протестированных импринтированных генов являются активными в нейрологических процессах, некоторые из них влияют на скорость неонатального роста, меняя материнское поведение. Наиболее загадочной категорией, принимая во внимание попытки идентифицировать селективную силу, направляющую приобретение экспрессии импринтированных генов у всех ныне живущих млекопитающих, является категория импринтированных генов, не имеющих никаких очевидных биологических функций в эмбриональном развитии, и эта категория содержит 25 % протестированных импринтированных генов.
3.2. Функция геномного импринтинга у млекопитающих
Могут ли анализы функции гена помочь нам понять, почему гены импринтированы у млекопитающих? Взгляд на геномный импринтинг у разных типов млекопитающих проливает некоторый свет на эту проблему. Плацентарные млекопитающие, такие как мыши и человек, и сумчатые, такие как опоссум и валлаби, демонстрируют геномный импринтинг. Яйцекладущие млекопитающие, такие как утконос и ехидна, по-видимому, не имеют импринтированных генов, хотя экстенсивные исследования все еще не были проведены. Плацентарные млекопитающие и сумчатые различаются в отношении их репродуктивной стратегии, которая позволяет зародышу непосредственно влиять ца объем материнских ресурсов, используемых для его собственного роста. Напротив, эмбрионы, развивающиеся в яйце, не способны прямо влиять на материнские ресурсы. Большинство беспозвоночных и позвоночных используют репродуктивную стратегию, связанную с откладкой яиц. Важно отметить, что они могут также претерпевать партеногенез — форму репродукции, при которой женская гамета развивается в новую диплоидную особь без оплодотворения мужской гаметой (обратите внимание на то, что партеногенетические эмбрионы возникают в результате дупликации одного и того же материнского генома, тогда как гиногенетические эмбрионы, изображенные на рис. 19.3, возникают из двух разных материнских геномов). Эта способность проходить партеногенез, вероятнее всего, указывает на полное отсутствие геномного импринтинга, поскольку она показывает, что без отцовского генома можно обойтись. У млекопитающих, однако, прямым следствием экспрессии импринтированного гена, контролирующего рост плода, является невозможность партеногенеза. Для того чтобы произвести жизнеспособное потомство, необходимы и мать, и отец, что делает млекопитающих в этом деле полностью зависимыми от полового воспроизведения (рис. 19.4). У млекопитающих партеногенез пока еще не наблюдался, несмотря на противоположные заявления, хотя редкие мыши с диплоидным материнским геномом недавно были созданы путем манипулирования с экспрессией импринтированного кластера Igf2 (Kono et al., 2004).