Хотя имеющиеся данные предполагают, главным образом, приобретение гистонами модификаций, а не их утрату на глобальном уровне в этот период, возможно, что метилирование гистонов по аргинину является более динамичным. Действительно, в ооцитах присутствует Padi4, кандидат на вырезание метилированных аргининов в гистонах с помошью «леаминирования» (Sacramento et al., 2004).
Представляется, что основной результат быстрых изменений хроматина при оплодотворении заключается в том, что на двухклеточной стадии отцовский геном становится схожим с материнским. Это исключает метилирование ДНК, которое значительно отличается у двух геномов, в основном вследствие деметилирования генома спермиев. Кроме того, проведенный анализ не исключает, что на этой стадии устанавливается геноспецифические различия в модификации гистонов.
3.3 От зиготы к бластоцисте
Дальнейшее репрограммирование, в частности ДНК метилирование по всему геному, продолжается от двухклеточной стадии через стадию дробления преимплантационного развития до достижения эмбрионом стадии бластоцисты (Monk et al. 1987; Howlett and Reik, 191; Rougier et al., 1998). Точная динамика модификаций гистонов у мышей пока не описана, однако метилирование ДНК постепенно уменьшается с каждым клеточным делением до стадии 16-клеточной морулы. Причина заключатся в том, что Dnmtl, метилтрансфераза, которая полуконсервативно поддерживает метилирование CpG динуклекотидов во время репликации ДНК, исключается из ядра (Carlson et al., 1992). Следовательно, при каждом делении теряется 50 % всей геномной метилированной ДНК. Единственным, хорошо документированным исключением из этого являются DMR в импринтных генах. Не ясно, поддерживается ли их метилирование в этот период неизвестной Dnmt или за счет небольшого количества Dnmtl, способной попадать в ядро и специфически узнавать DMR. Примечательно, что на 8-клеточной стадии Dnmtl белок, по-видимому, появляется в ядре на один клеточный цикл. Если этот Dnmtl белок удалить (с помощью генетического элиминирования в ооците, который обеспечивает большую часть, если не целиком, этого белка, деления дробления), метилирование DMR, действительно, уменьшается на 50 %, что согласуется с представлением о его необходимости для поддержания метилирования в течение только одного цикла репликации (Howell et al., 2001).
На стадии 8—16 клеток наружные клетки морулы уплощаются и становятся эпителиальными. Это явление называют компактизацией и оно является первым внешним признаком дифференцировки эмбрионов млекопитающих. В течение последующих 2–3 делений в моруле происходит кавитация (например, образуется полость) и бластоциста становится различимой по своей внутренней массе (ICM) и наружной трофэктодерме (ТЕ). Клетки ICM формируют все линии эмбриона и плода, в то время как ТЕ клетки дают начало большинству (но не всем) линиям плаценты (экстраэмбриональные линии). Вскоре после этой стадии на поверхности ICM образуется еще один слой эпителиальных клеток, которые являются примитивной энтодермой, клетки которой тоже вносят вклад в развитие плаценты и желточного мешка, но не эмбриона. Известно несколько генетических детерминант распределения этих ранних событий: Oct4, Nanog и Sox2 важны для поддержания клеток ICM, в то время как Cdx2 необходим для детерминации или поддержания ТЕ клеток (Nichols et al.2003; Avilion et al., 2003; Chambers et al., 2003; Mitsui et al., 2003; Niwa et al., 2005). В какой степени материнский белок (присутствующий в ооците) или эпигенетическая регуляция этих генов могут вносить вклад в решение судьбы этих ранних клеток, пока не известно (Ferguson-Smith, 2001).
Однако большинство эпигенетических программных событий происходят как раз на этой стадии развития. Клетки ICM приобретают высокий уровень метилирования ДНК, по крайней мере, на основании данных иммунофлуоресценции (красные клетки внутри бластоцисты на левом рисунке титульной страницы), который возникает de novo с помощью метилтрансферазы Dnmt3b (Santos et. al., 2002). Это сопровождается усилением метилирования H3K9 и H3K27 гистонов с помощью G9a, Eset и Ezh2, соответственно (Erhardt et al., 2003). Хотя метилирование ДНК de novo не является критичным для начального этапа становления ICM клеток, метилирование гистонов с помощьюEzh2 и Eset является необходимым: при нокауте любого из этих генов развитие клеток ICM нарушается (CFCarroll et al., 2001; Dodge et al., 2004).