Выбрать главу

Изучение генотипов и фенотипов этих клинических нарушений показало, что за исключением SRS все остальные геномные нарушения импринтинга (PWS, AS, BWS, и РНР) могут быть вызваны смесью генетических или эпигенетических аномалий, либо возникших de novo, либо унаследованных. Трудно поверить, что такая смешанная генетическая модель заболевания будет оставаться уникальной для этого небольшого набора нарушений. Немногим более десятилетия назад UPD была лишь теоретической возможностью, но сейчас установлено, что она имеет место на многих участках хромосом и приводит к разнообразным заболеваниям и фенотипам, касающимся развития. Одна из задач исследований генетики человека — выявить, какие гены отвечают за те или иные из ассоциированных с UPD фенотипов с целью установить список болезней, которые, вероятно, являются результатом смешанных генетикоэпигенетических механизмов.

3.2. Нарушения, влияющие на структуру хроматина в trans-конфигурации

Значение тонко отлаженной структуры хроматина для здоровья человека выдвинулось на первое место в связи с быстро растущим списком заболеваний человека, вызванных мутациями в генах, кодирующих белки, необходимые для структуры и ремоделинга хроматина. Сами по себе эти нарушения не являются эпигенетическими мутациями, но они изменяют состояния хроматина, являющиеся критическими компонентами эпигенотипа. Значительные различия между фенотипами, так же как тот факт, что едва уловимые изменения в уровне белка или даже консервативная аминокислотная замена могут приводить к заболеванию человека, все эти данные уже дают ключ к проблеме, касающейся строго контролируемой регуляции и взаимодействий белков ремоделинга хроматина. Нарушения, которые влияют на хроматин в trans-конфигурации, являются результатом либо нарушения функции белков, непосредственно участвующих в ремоделинге хроматина (таких, как белок, связывающийся с CREB, или СВР, ЕР300, а также белок, связывающийся с метил-CpG, или МеСР2), либо потери функции белков, участвующих в метилировании ДНК (таких, как de novo ДНК-метилтрансфераза ЗВ. DNMT3B, или метилентетрафолатредуктаза, MTHFR) (табл. 23.2). Нарушение функции любого из этих генов вызывает комплексные мультисистемные фенотипы или неоплазии, благодаря эффектам мисрегуляции экспрессии большого числа генов-мишеней, находящихся «ниже по течению». Вполне возможно, что существует множество заболеваний, которые вызываются мутациями в некодирующих РНК, действующими в trans-конфигурапии, хотя их еще предстоит обнаружить.

Таблица 23.2. Выборочные генетические нарушения, влияющие на структуру хроматина в trans-конфигурации
Синдром Рубинштейна-Тайби

Синдром Рубинштейна-Тайби (RSTS, Rubinstein-Taybi syndrome; OMIM 180849) характеризуется задержкой умственного развития, широкими большими пальцами рук и ног, аномалиями лица, врожденными пороками сердца и повышенным риском образования опухолей. Высокая частота конкордантности у монозиготных близнецов, наряду с несколькими случаями передачи от матери к плоду, предполагают, что это заболевание имеет генетическую основу, и что наиболее вероятно аутосомное доминантное наследование. У некоторых пациентов с RSTS были установлены цитогенетические аномалии, включающие 16р13.3 (Tommerup et al., 1992), которые картируются в участке, содержащем ген белка, связывающегося с CREB (CREBBP, или СВР). Гетерозиготные мутации в CREBBP демонстрируют, что гапло-недостаточность СВР вызывает RSTS (Petrij et al., 1995). СВР впервые был описан как коактиватор реагирующего на с АМР белка CREB При повышении внутриклеточных уровней сАМР протеинкиназа А (РКА) перемещается в ядро и фосфорилирует CREB, что приводит к его активации и связыванию его с элементами ответа на количество сАМР (Мауг and Montminy, 2001). СВР — это крупный белок (~250 кДа) с бромодоменом, который, как показано, связывает РКА-фосфорилированный CREB (Chrivia et al., 1993). СВР, в свою очередь, активирует транскрипцию с промотора, содержащего CRE через ацетилирование всех четырех коровых гистонов в соседних нуклеосомах (Ogryzko et al, 1996). Кроме того, СВР взаимодействует непосредственно с основным транскрипционным фактором TFIIIB через участок на своем карбоксильном конце (Anas et al., 1994; Kwok et al., 1994). Функциональный анализ in vitro одной из миссенс-мутаций СВР (замена Arg-1378 на пролин), вызывающей RSTS, выявил, что эта мутация подавляет гистон-ацетилтрансферазную (HAT) активность СВР (Murata et al., 2001). Эти данные, в сочетании с тем, что мыши, гаплонедостаточные по СВР, имеют ослабленную память и обучаемость, измененную синаптическую пластичность и аномальное ацетилирование хроматина, поддерживают вывод о том, что ослабленная НАТ-активность СВР — это главная причина RSTS фенотипа (Alarcon et al., 2004). В соответствии с ролью, которую играет в заболевании понижение НАТ-активности, находится недавнее открытие того, что мутация во втором гене, рЗОО, кодирующем эффективную HAT и транскрипционный коактиватор, вызывает некоторые случаи RSTS (Roelfsema et al., 2005). Выявление того, что некоторые дефекты синаптической пластичности, как и недостатки обучаемости и памяти у СВР " мышей, могут быть ревертированы с помощью ингибиторов деацетилазы гистонов (HDAC) (Alarcon et al., 2004), вызывает вопрос о том, может ли лекарственная терапия, использующая эти реагенты, устранить некоторые ментальные проблемы при RSTS.