Умственная отсталость, связанная с ломкой Х-хромосомой (OMIM 309550), — это один из наиболее обычных случаев (causes) наследуемой умственной отсталости. Более 60 лет назад Мартин и Белл описали семью, в которой было показано, что умственная отсталость расщепляется как нарушение, сцепленное с Х-хромосомой (Martin and Bell, 1943). В 1969 году Лабе сообщал о сужении на длинном плече Х-хромосомы у некоторых умственно отсталых пациентов мужского пола и у бессимптомных пациентов женского пола (Lubs, 1969). Такой хромосомный вариант был картирован в Xq27.3 и был назван ломкой Х-хромосомой (Harrison et al., 1983). Цитогенетические исследования, особенно те, в которых использовались культуральные среды с дефицитом фолиевой кислоты и тимидина, выявили ломкий сайт в семьях с Х-сцепленной умственной отсталостью; впоследствии эти семьи были диагносцированы как несущие синдром ломкой Х-хромосомы (Sutherland, 1977; Richards et al., 1981). Мужчины с этим синдромом имеют умственную отсталость от умеренной до тяжелой, макроорхидизм, аномалии соединительных тканей, такие как сверхрастяжимость суставов, и большие уши (рис. 23.6) (Hagerman et al., 1984). Ген, отвечающий за синдром ломкой Х-хромосомы,— это ген FMR1, который кодирует белок FMRR Наиболее обычный механизм мутации — это экспансия нестабильного некодирующего повтора CGG (Warren and Sherman, 2001). Нормальные аллели содержат 6—60 повторов, премутационные — 60—200, а полная мутация содержит более 200 повторов. Увеличение количества повторов на 5’UTR гена FMR1 представляет собой превосходный пример генетического расстройства, опосредованного изменением структуры хроматина в cis-конфигурации.
Рис. 23.6. Пример генетичесского нарушения, влияющего на хроматин в trans-конфигурации.
Фотография пациента с синдромом ломкой Х-хромосомы, который, помимо умственной отсталости, обладает типичными признаками, а именно выдающимся лбом и большими ушами. Фотография любезно предоставлена доктором Стивеном Уорреном (Dr. Stephen Т. Warren)
Островок CpG в 5’-регуляторном участке FMR1 становится в случае полной мутации аберрантно метилированным после экспансии повторов (Verkerk et al., 1991). Пониженное ацетилирование гистонов на 5’ конце было установлено в клетках пациентов с ломкой Х-хромосомой при сравнении со здоровыми контрольными пациентами (Coffee et al., 1999). В свою очередь, измененные паттерны метилирования ДНК и ацетилирования гистонов приводят к потере экспрессии FMR1, и, соответственно, к потере функции белка FMRP у пациентов с синдромом ломкой Х-хромосомы. Таким образом, эти пациенты имеют первичную генетическую мутацию и вторичную эпигенетическую мутацию.
Интересный эпигенетический механизм был предложен для объяснения того, как повтор CGG в гене FMR1 метилируется и впоследствии сайленсируется. Тот факт, что премутационный повтор CGG формирует одиночную и стабильную шпилечную структуру (Handa et al., 2003), наряду с данными о том, что повторы rCGG могут расщепляться Dicer, обусловил возможность того, что обнаружившие экспансию повторы CGG (которые в период раннего развития не метилированы) могут транскрибироваться и что получающаяся в результате РНК образует шпильку, которая может расщепляться Dicer для образования малых некодирующих РНК. Эти молекулы малых РНК связываются с РНК-индуцированным инициатором транскрипционного сайленсинга генов (RITS) и рекрутируют de novo метилтрансферазы ДНК и (или) метилтрансферазы гистонов к 5'UTR гена FMR1, что приводит к полному метилированию повтора CGG и транскрипционной репрессии FMRluo мере развития (Jin et al., 2004а).