Bachman K.E., Rountree M.R., and Baylin S.B., 2001 Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276: 32282-32287.
Bastepe M., Frohlich L.E, Hendy G.N., Indridason O.S., Josse R.G., Koshiyama H., Korkko J., Nakamoto J.M., Rosenbloom A.L., Slyper A.H., et al., 2003. Autosomal dominant pseudohypoparathyroidism type lb is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J. Clin. Invest. 112: 1255-1263.
Bembe N.G., Mangelsdorf M., Jagla M., Vanderluit J., Garrick D., Gibbons R.J., Higgs D.R., Slack R.S., and Picketts D.J., 2005. The chro-matin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J.Clin. Invest. 115: 258-267.
Bickmore W.A. and van der Maarel S.M., 2003. Perturbations of chromatin structure in human genetic disease: Recent advances. Hum. Mol. Genet. 12: R207-R213.
Boerkoel C.E, Takashima H., John J., Yan J., Stankiewicz P., Rosen-barker L., Andre J.L., Bogdanovic R., Burguet A., Cockfield S., et al., 2002. Mutant chromatin remodeling protein SMAR-CAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30: 215-220.
Bottiglieri T., Hyland K., and Reynolds E.H., 1994. The clinical potential of ademethionine (S-adenosylmethionine) in neurological disorders. Drugs 48: 137-152.
Botto L.D. and Yang Q., 2000. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am. J. Epidemiol. 151: 862-877.
Brattstrom L., Wilcken D.E., Ohrvik J., and Brudin L., 1998. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: The result of a meta-analysis. Circulation 98: 2520-2526.
Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenen-baum S.A., Jin X., Feng Y., Wilkinson K.D., Keene J.D., et al., 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107: 477-487.
Carney R.M., Wolpert CM., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., Vance J.M., and Pericak-Vance M.A., 2003. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28: 205-211.
Caspary T., Cleary M.A., Perlman E.J., Zhang P., Elledge S.J., and Tilgh-man S.M., 1999. Oppositely imprinted genes p57Kip2 and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 13: 3115-3124.
Caudy A.A., Myers M., Hannon G.J., and Hammond S.M., 2002. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16: 2491-2496.
Chen J., Giovannucci E.L., and Hunter D.J., 1999. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: An example of gene-environment interactions in colorectal tumorigenesis. J.Nutr. 129: S560-S564.
Chen W.G., Chang Q., Lin Y., MeissnerA., West A. E., Griffith E.C., Jaenisch R., and Greenberg M.E., 2003. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885-889.
Chen Z., Karaplis A.C., Ackerman S.L., Pogribny LP, Melnyk S., Lussier-Cacan S., Chen M.F., Pai A., John S.W., Smith R.S., et al., 2001. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10: 433-443.
Chrivia J.C., Kwok R.P., Lamb N., Hagiwara M., Montminy M.R., and Goodman R.H., 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855-859.
Coffee B., Zhang E, Warren S.T., and Reines D., 1999. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells (erratum Nat. Genet. 22: 209 [1999]). Nat. Genet. 22: 98-101
Collins A.L., Levenson J.M., Vilaythong A.P., Richman R.D., Armstrong L., Noebels J.L., Sweatt J.D.. andZoghbi H.Y., 2004. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13: 2679-2689.
Cooney C.A., 1993. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev. Aging 57: 261-273.
CooperW.N., LuhanaA., EvansG.A., RazaH., Haire A.C., Gmndy R., Bowdin S.C., Riccio A., Sebastio G., Bliek J., et al., 2005. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 13: 1025-1032.
Couvert P., Bienvenu T., AquavivaC., Poirier K., Moraine C., Gen-drot C., Verloes A., Andres C., Le Fevre A.C., Souville I., et al.. 2001. MECP2 is highly mutated in X-linked mental retardation. Hum. Mol. Genet. 10: 941-946.
Cox G.F., Burger J., Lip V., Mau U.A., Sperling K., Wu B.L., and Horsthemke B., 2002. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet. 71: 162-164
Curtin P., Pirastu M., Kan Y.W., Gobert-Jones J.A., Stephens A.D., and Lehmann H., 1985. A distant gene deletion affects p-globin gene function in an atypical y (^-thalassemia. J.Clin. Invest. 76: 1554-1558.
Darnell J.C., Jensen K.B., Jin P., Brown V., Warren S.T., and Darnell R.B., 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107: 489-499.
Darnell J.C., Fraser C.E., Mostovetsky O., Stefani G., Jones T.A., Eddy S.R., and Darnell R.B., 2005. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev., 19: 903-918.
DeBaun M.R., Niemitz E.L., and Feinberg A.P., 2003. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and HI9. Am. J. Hum. Genet. 72: 156-160.
Dennis C., 2003. Epigenetics and disease: Altered states. Nature 421: 686-688.
Ding E, Prints Y., Dhar M.S., Johnson D.K., Gamacho-Montero C., Nicholls R.D., and Francke U., 2005. Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Wlli syndrome mouse models. Mamm. Genome 16: 424-431.
Driscoll M.C., Dobkin C.S., and Alter B.P., 1989. ???-thalassemia due to a de novo mutation deleting the 5’ p-globin gene activation-region hypersensitive sites. Proc. Natl. Acad. Sci. 86: 7470-7474.
Eggermann T, Wollmann H.A., Kuner R., Eggermann K., Enders H., Kaiser P., and Ranke M.B., 1997. Molecular studies in 37 Silver-Russell syndrome patients: Frequency and etiology of uniparental disomy. Hum. Genet. 100: 415-419.
Ehrlich M., 2003. The ICF syndrome, a DNAmethyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol 109: 17-28.