Jiang Y.H., Armstrong D., Albrecht U., Atkins C.M., Noebels J.L., Eichele C., Sweatt J. D., and Beaudet A. L., 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation (see comments). Neuron 21: 799-811.
Jin P., Alisch R.S., and Warren S.T., 2004a. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6: 1048-1053.
Jin P., Zamescu D.C., Zhang E., Pearson C.E., Lucchesi J.C., Moses K., and Warren S.T., 2003. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39: 739-747.
Jin P., Zamescu D.C, Ceman S., Nakamoto M., Mowrey J., Jongens T.A., Nelson D.L., Moses K., and Warren S.T., 2004b. Biochemical and genetic interaction between the fragile X mental retardation protein and the micro RNA pathway. Nat. Neurosci. 7: 113-117.
Joyce J.A., Lam W.K., Catchpoole D.J., Jenks P., Reik W, Maher E.R., and Schofield P.N., 1997. Imprinting of IGF2 and H19: Lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 6: 1543-1548.
Kaufmann W.E., Jarrar M.H., Wang J.S., Lee Y.J., Reddy S., Bibat G., and Naidu S., 2005. Histone modifications in Rett syndrome lymphocytes: A preliminary evaluation. Brain Dev. 27: 331-339.
Kioussis D., Vanin E., deLange T., Flavell R.A., and Grosveld E.G., 1983. Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306: 662-666.
Kishi N. and Macklis J.D., 2004. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol. Cell. Neurosci. 27: 306-321.
KishinoT., Lalande M., andWagstaffJ., 1997. UBE3A/E6-APmutations cause Angelman syndrome. Nat. Genet. 15: 70-73.
Kondo T., Bobek M.P., Kuick R., Lamb B., Zhu X., Narayan A., Bourc’his D., Viegas-Pequignot E., Ehrlich M., and Hanash S.M., 2000. Whole-genome methylation scan in ICF syndrome: Hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet. 9: 597-604.
Korenke G.C., Fuchs S., Krasemann E., Doerr H.G., Wilichowski E., Hunneman D.H., and Hanefeld F., 1996. Cerebral adreno-leukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann. Neurol. 40: 254-257.
Kwok R.P., Lundblad J.R., Chrivia J.C., Richards J.P., Bachinger H.P., Brennan R.G., Roberts S.G., Green M.R., and Goodman R.H., 1994. Nuclear protein GBP is a coactivator for the transcription factor CREB. Nature 370: 223-226.
Laggerbauer B.. Ostareck D., Keidel E.M.. Ostareck-Lederer A., and Fischer U., 2001. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10: 329-338.
Ledbetter D.H., Riccardi V.M., Airhart S.D., Strobel R.J., Keenan B.S., and Crawford J. D., 1981. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N. Engl. J. Med. 304: 325-329.
Lee M.P., DeBaun M.R., Mitsuya K., Galonek H.L., Brandenburg S., Oshimura M., and Feinberg A.P., 1999. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. 96: 5203-5208.
Lemmers R.J., de Kievit P, Sandkuijl L., Padberg G.W., van Ommen G.J., Frants R.R., and van der Maarel S.M., 2002. Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat. Genet. 32: 235-236.
Lewis J.D., Meehan R.R., Henzel W.J., Maurer-Fogy I., Jeppesen P., Klein F., and Bird A., 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905-914.
Li Z., Zhang Y., Ku L., Wilkinson K.D., Warren S.T., and Feng Y., 2001. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29: 2276-2283.
Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., Sharma S., Pearson D., Plotsky P.M., and Meaney M.J., 1997. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress Science 277: 1659-1662.
Lubs H.A., 1969. A marker X chromosome. Am. J. Hum. Genet. 21: 231-244.
Ludwig M., Katalinic A., Gross S., Sutcliffe A., Varon R., and Horst-hemke B., 2005. Increased prevalence of imprinting defects in patients with Angelman syndrome bom to subfertile couples. J. Med. Genet. 42: 289-291.
Ma J., Stampfer M.J., Giovannucci E., Artigas C, Hunter D.J., Fuchs C, Willett W.C., Selhub J., Hennekens C.H., and Rozen R.. 1997. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57: 1098-1102.
Magenis R.E., Brown M.G., Lacy D.A., Budden S., and LaFranchi S., 1987. Is Angelman syndrome an alternate result of del( 15) (qllql3)?Am/. Med. Genet. 28: 829-838.
Martin J. and Bell J., 1943. A pedigree of mental defect showing sex-linkage. Arch. Neurol. Psychiat. 6: 154-157.
Martinowich K., Hattori D., Wu F.L., Fouse S., He E., Hu Y., Fan G., and Sun Y.E., 2003. DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation. Science 302: 890-893.
Mathews K.D., 2003. Muscular dystrophy overview. Genetics and diagnosis. Neurol Clin. 21: 795-816
Matsuura T., Sutcliffe J.S., Fang P., Galjaard R.J., Jiang Y.H., Benton C.S., Rommens J.M., and Beaudet A.L., 1997. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 15: 74-77.
Mayr B. and Montminy M., 2001. Transcriptional regulation by the phosphoiylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2: 599-609.
Mays- Hoopes L.L., 1989. Age-related changes in DNA methylation: Do they represent continued developmental changes? Int. Rev. Cytol. 114: 181-220.
McDowell T.L., Gibbons R.J., Sutherland F.L, O’Rourke D.M., Bickmore W.A., Pombo A., Turley H., Gatter K., Picketts D.J., Buckle V.J., et al., 1999. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. 96: 13983-13988.
Meguro M., Mitsuya K., Nomura N., Kohda M., KashiwagiA., Nishigaki R., Yoshioka H., Nakao M., Oishi M., and Oshimura M., 2001. Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: An imprinted direct repeat cluster resembling small nucleolar RNA genes. Hum. Mol. Genet. 10: 383-394.
Meins M., Lehmann J., Gerresheim F., Herchenbach J., Hagedom M., Hameister K., and Epplen J.T., 2005. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42: e12.