Meloni I., Bruttini M., Longo I., Mari E., Rizzolio F. D’Adamo P.. Den-vriendt K., Fryns J.P., Toniolo D., and Renieri A., 2000. A mutation in the Rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am. J. Hum. Genet. 67: 982-985.
Mullaney B.C., Johnston M.V., and Blue M.E., 2004. Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123: 939-949.
Murata T., Kurokawa R., Krones A., Tatsumi K., Ishii M., Taki T., Masuno M., Ohashi H, Yanagisawa M., Rosenfeld M.G.. et al., 2001. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome Hum. Mol. Genet. 10: 1071-1076.
Nan X., Campoy F.J., and Bird A., 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471-481.
Neul J.L. and Zoghbi H.Y., 2004. Rett syndrome: A prototypical neurodevelopmental disorder. Neuroscientist 10: 118-128.
Nicholls R.D., Knoll J.H.M., Butler M.G., Karam S., and Lalande M., 1989. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342: 281-285.
Nuber U.A., Kriaucionis S., RoloffT.C., Guy J., Selfridge J., Stein-hoff G, Schulz R., Lipkowitz B., Ropers H.H., Holmes M.C., and Bird A., 2005. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum. Mol. Genet. 14: 2247-2256.
Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., and Naka-tani Y., 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953-959.
Ohta T., Gray T.A., Rogan P.K., Buiting I.C., Gabriel J.M., Saitoh S., Muralidhar B., Bilienska B., Krajewska-Walasek M., Driscoll D.J., et al., 1999. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am. J. Hum. Genet. 64: 397-413.
Okano M., Bell D.W., Haber D.A., and Li E., 1999. DNA meth-yltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257.
Orstavik K.H., Eiklid K., van der Hagen C.B., Spetalen S., Kierulf K., Skjeldal O., and Buiting K., 2003. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am. J. Hum. Genet. 72: 218-219.
Petrij E., Giles R.H., Dauwerse H.G., Sans J.J., Hennekam R.C., Masuno M., Tommerup N., van Ommen G J., Goodman R.H., Peters D.J., et al., 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348-351.
Petroms A., 2004. The origin of schizophrenia: Genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatry 55: 965-970.
Picketts D.J., Higgs D.R., Bachoo S., Blake D.J., Quarrell O.W., and Gibbons R.J., 1996. ATRX encodes a novel member of the SNF2 family of proteins: Mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5: 1899-1907.
Pieretti M., Zhang E., Fu Y.-H., Warren S.T., Oostra B.A., Caskey C.T., and Nelson D. L., 1991. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66: 817-822.
Ping A.J., Reeve A.E., Law D.J., Young M.R., Boehnke M., and Feinberg A.P., 1989. Genetic linkage of Beckwith-Wiedemann syndrome to 1 lpl5. Am. J. Hum. Genet. 44: 720-773.
Prawitt D., Enklaar T., Gartner-Rupprecht B., Spangenberg C., Oswald M., Lausch E., Schmidfke P., Reutzel D., Fees S., Lucito R., et al., 2005. Microdeletion of target sites for insulator protein CTCF in a chromosome 1 lpl5 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc. Natl. Acad. Sci. 102: 4085-4090.
Rampersaud G.C., Kauwell G.P., Hutson A.D.. Cerda J.J., and Bailey L.B., 2000. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am. J. Clin.Nutr. 72: 998-1003.
Reik W., 1989. Genomic imprinting and genetic disorders in man. Trends Genet. 5: 331-336.
Reynolds E.H., Carney M.W., and Toone B.K., 1984. Methylation and mood. Lancet 2: 196-198.
Richards B.W., Sylvester P.E., and BrookerC., 1981. Fragile X-linked mental retardation: The Martin-Bell syndrome. J. Merit. Defic. Res. 25: 253-256.
Roelfsema J.H., White S.J., Ariyurek Y., Bartholdi D., Niedrist D., Papadia E., Bacino C.A., den Dunnen J.T., van Ommen G.J., Breuning M.H., et al., 2005. Genetic heterogeneity in Rubinstein-Taybi syndrome: Mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76: 572-580.
Rougeulle C., Cardoso C., Fontes M., Colleaux L., and Lalande M., 1998. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Mat Genet., 19: 15-16.
Rozen R., 1996. Molecular genetics of methylenetetrahydrofolate reductase deficiency. /. Inherit. Metab. Dis., 19: 589-594.
Runte M., Varon R., Horn D., Horsthemke B., and Buiting K., 2005. Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum. Genet. 116: 228-230.
Schimke R.N., Horton W.A., and King C.R., 1971. Chondroitin-6-sulphaturia, defective cellular immunity, and nephrotic syndrome. Lancet 1: 1088-1089.
Schule B., Albalwi M., Northrop E., Francis D.L., Rowell M., Slater H.R., Gardner R.J., and Francke U., 2005. Molecular breakpoint cloning and gene expression studies of a novel translocation t(4; 15)(q27 ;ql 1.2) associated with Prader-Willi syndrome. BMC Med. Genet. 6: 18.
Schwahn B. and Rozen R., 2001. Polymorphisms in the methylenetetrahydrofolate reductase gene: Clinical consequences. Am. J. Pharmacogenomics 1. 189-201.
Shahbazian M.D., Antalffy B., Armstrong D.L., and Zoghbi H.Y., 2002a. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 11: 115-124.
Shahbazian M., Young J., Yuva-Paylor L., Spencer C., Antalffy B., Noebels J., Armstrong D., Paylor R., and Zoghbi H., 2002b. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35: 243-254.
Smeets D.F., Moog U., Weemaes C.M.. Vaes-Peeters G., Merkx G.F., Niehof J.P., and Hamers G., 1994. ICF syndrome: A new case and review of the literature. Hum. Genet. 94: 240-246.
Smeets D.F., Hamel B.C., Nelen M.R., Smeets H.J., Bollen J.H., Smits A.P., Ropers H.H., and van Oost B.A., 1992. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. A. Engl. J. Med. 326: 807-811.
Smilinich N.J., Day CD., Fitzpatrick G.V., Caldwell G.M., Lossie A.C., Cooper P.R., Smallwood A.C., Joyce J.A., Schofield P.N., Reik W., et al., 1999. A maternally methylated CpG island in KvLQTl is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wedemann syndrome. Proc. Natl. Acad. Sci. 96: 8064-8069.