Другие подходы связаны с опознаванием на микрочипах нуклеотидных последовательностей содержащихся в геноме островков CpG (С.М. Chen et al., 2003), поскольку они часто связаны со стартовыми сайтами гена, и с зондированием чипов с помощью геномной ДНК, которая была переварена чувствительными к метилированию ферментами, либо с помощью кДНК, с учетом статуса экспресии генов. Этот подход обладает мощным потенциалом для идентификации гиперметилированных супрессоров опухоли, но он ограничен числом возможных островков CpG, которые могут быть чипированы.
Еще один подход состоит в том, чтобы обрабатывать культуры опухолевых клеток агентами, которые вызывают деметилирование ДНК, такими как 5-азацитидин или 5-аза-2’-деоксицитидин, и проводить гибридизацию РНК до и после обработки препаратами на генных микрочипах для выявления ап-регурированных генов (Suzuki et al., 2002; Yamashita et al., 2002). Этот подход потенциально может идентифицировать все гиперметилированные гены в культурах клеток всех типов человеческого рака. Однако изменения в генах, вызванные другими причинами, нежели деметилируюшая активность используемых препаратов, может понизить эффективность идентификации гиперметилированных генов. Меньше всего осознается тот факт, что самый низкий уровень экспрессии разыскиваемых генов, как до, так и после обработки препаратами резко ставит под вопрос чувствительность большинства генов микрочипов, заметно снижая эффективность данного подхода (Suzuki et al., 2002). Применение метода вычитания после обработки препаратами для обогащения генными транскриптами, содержание которых повышено, может повысить чувствительность подхода, основанного на генных микрочипах (Suzuki et al., 2002), но он должен быть адаптирован таким образом, чтобы удовлетворять требованиям флуоресцентного мечения зондов для микрочипов, что легко позволит покрыть весь геном Одновременное применение препаратов, модифицирующих изменения хроматина, которые действуют совместно с метилированием промотора ДНК, например, такими как ингибиторы HDAC, может помочь в подходах, основанных на генных микрочипах. Данный маневр помогает более специфично идентифицировать разыскиваемые гены, принимая во внимание ту роль, которую изменения хроматина играют в сайленсировании гиперметилированных генов, что детально обсуждается в последующем разделе. Этот последний подход позволил недавно идентифицировать важные гены, сайленсированнные при раке толстой кишки (Suzuki et al., 2002).
4.3. Определение функциональной важности генов, гиперметилированных при раковых заболеваниях
Стремительность, с которой стали обнаруживаться гиперметилированные гены при раке, представляет собой исследовательскую проблему, вызывающую опасения. Частое гиперметилирование промотора данного гена не гарантирует само по себе функционального значения для сайленсинга сопутствующего гена, что обычно бывает при потере функции, обусловленной генетической мутацией. Это имеет место особенно в том случае, когда гиперметилированный ген не является известным классическим супрессором опухоли и когда нет свидетельста тому, что этот ген также может часто мутировать при различных видах рака. Итак, обязательно, чтобы рассматриваемый ген изучался таким образом, чтобы важность потери функции определялась и с точки зрения процессов, контролируемых кодируемым белком, и с точки зрения последствий этого для развития опухоли. Есть несколько возрастающих по значению стадий таких исследований, очерченных в табл. 24.4; целью этих исследований является строгое документирование роли в образовании раковых заболеваний.
Первая, это, конечно, документирование гиперметилирования и его последствий для состояния экспрессии гена, включая способность гена подвергаться реэкспрессии при деметилировании промотора. Вторая — наличие гиперметилирования и сайленсинга данного гена должны быть хорошо установлены как в первичных пробах из опухолей, так и в культуре опухолевых клеток. Третья, как объясняется ниже, часто необходимо знать, в какой точке развития опухоли осуществляется сайленсинг гена (рис. 24.4). Четвертая — следует напрямую оценить, насколько канцерогенной является потеря функции гена. Можно начать с рутинного изучения культур клеток через оценку влияния восстановления гена на свойства клеток, такие как индукция апоптоза, эффект клонирования на мягком агаре, и влияние на канцерогенность клеток, растущих как ксенотрансплантат (гетеротрансплантат) в безтимусовых мышах. Пятая должна быть определена функция кодируемого белка либо через предварительные сведения относительно типа белка — через распознование его предполагаемых функций исходя из природы его структуры, или через изучение биологических свойств белка на моделях культур клеток. В конечном счете, однако, должен быть сделан шестой шаг, который может часто включать в себя трангенные нокаутные подходы, чтобы установить роль гена как гена-супрессора опухоли и чтобы понять, каковы функции кодируемых белков в развитии, обновлении клеток у взрослого организма и т.д. Изучение нокаутных мышей оказались чрезвычайно полезными для подтверждения функции HIC-1 как гена-супрессора опухоли, после того как он был идентифицирован посредством отбора тех участков генома раковых клеток, которые утратили гетерозиготность (W.Y. Chen et al., 2003, 2004). Эти сомнения и особенно шестой этап, показывают, насколько важно обнаружить гены, эпигенетически сайленсированные при раке, но создают широкий фронт работы, который следует рассмотреть исследователям в этой области.