Выбрать главу

Еще один пример из данной группы генов — это HIC-1 (hypermethylated-in-cancer 1). который кодирует транскрипционный репрессор типа «цинкового пальца» HIC-1 был обнаружен методом случайного скрининга на гиперметилированные островки CpG в горячей точке для потери хромосомы в раковых клетках (Wales et al., 1995). Оказалось, что этот ген, который сайленсирует на ранней стадии развития рака, но не мутирует, играет роль гена-супрессора опухоли при использовании модели нокаутной мыши (WY. Chen et al., 2003, 2004). Он служит дополнением к мутациям р53 частично, через потерю функции, которая приводит к апрегуляции SIRT1 (Chen et al., 2005), ключевого белка, воспринимающего клеточный стресс, и участвующего в росте стволовых или прогениторных клеток (Howitz et al., 2003; Nemoto et al., 2004; Kuzmichev et al., 2005).

Таким образом, приведенные выше данные вносят свой вклад в тематические гипотезы, представленные на рис. 24.4. Это предполагает, что некоторые из наиболее ранних наследуемых изменений в развитии опухолей могут представлять собой эпигенетические изменения, которые часто включают в себя жесткий транскрипционный сайленсинг генов, поддерживаемый метилированием промотора ДНК. Сложные задачи по дальнейшему пониманию этих сценариев целиком связаны с ключевыми задачами по изучению эпигенетических изменений при раковых заболеваниях, которые обрисованы в табл. 24.5 и более полно обсуждаются далее. Решение этих задач, в особенности для понимания роли эпигенетических изменений на самых ранних стадиях неопластического формирования, может удивительно обогатить молекулярные стратегии, имеющие целью предотвращение и раннее вмешательство при раковых заболеваниях.

Таблица 24.5. Главные задачи исследований молекулярных событий, связанные с эпигенетическим сайленсингом генов при раке

1. Выяснить связи между одновременным появлением и утратой метилирования ДНК в одних и тех же раковых клетках

2. Определить молекулярную природу границ (и то, как они изменяются при опухолеобразовании), которые отделяют области транскрипционно активных зон от транскрипционно репрессивных областей, окружающих промоторы генов и которые могут препятствовать распространению репрессивного хроматина через активную зону. Роль возможных механизмов могут играть ключевые модификации гистонов, инсуляторные белки, белки, осуществляющие ремоделинг хроматина, и т. д.

3. Определить, какова последовательность событий в эволюции генного сайленсинга при раке, по отношению к модификации гистонов, метилированию ДНК и т. д. Что идет вначале и каковы ключевые белковые комплексы (ферменты метилирования ДНК, ферменты деацетилирования и метилирования гистонов, белки, связывающиеся CpG с метилом, комплексы сайленсинга группы Polycomb и т. д.), которые нацеливают вышеупомянутые процессы, определяющие данные события

4. Какие специфические ферменты, метилирующие ДНК, требуются для инициации и(или) поддержания наиболее стабильного генного сайленсинга, и какие белковые комплексы содержат их. с учетом их взаимодействие с ключевыми компонентами гистонового кода

5. Каковы все компоненты аппарата метилирования ДНК и хроматина и какова иерархия их участия, необходимого для поддержания генного сайленсинга, и насколько обратимы их действия?

6. Молекулярная анатомия эпигенетически сайленсированных раковых генов

Гены, сайленсированные в неопластических клетках, важны для понимания инициации и дальнейшего поддержания рака. Они также служат великолепными моделями для понимания того, как может инициироваться и поддерживаться сайленсинг гена, и как упакован геном млекопитающих, чтобы облегчить доступ к участкам транскрипции и репрессии транскрипции. В свою очередь, понимание функции хроматина, на которой сосредоточено основное внимание во многих главах этой книги, облегчает наше понимание того, что может служить триггером для аберрантного сайленсинга генов при раке, и того, как компоненты этого сайленсинга поддерживают сопутствующую ему транскрипционную репрессию.