Рис. 3.21. Основные вопросы в эпигенетических исследованиях
Многие экспериментальные системы, используемые в эпигенетических исследованиях, вскрыли многочисленные пути и новые механизмы эпигенетического контроля Однако многие вопросы, как показано на этом рисунке, все еще остаются без ответа и нуждаются в дальнейшем выяснении или в подтверждении с использованием новых и уже существующих систем и методов
Остается еще много фундаментальных эпигенетических вопросов. Например, что отличает одну нить хроматина от другой, аллельной, хотя обе содержат одинаковые нуклеотидные последовательности ДНК в одном и том же ядерном окружении? Что определяет механизмы, обеспечивающие наследование и воспроизведение эпигенетической информации? Какова молекулярная природа клеточной памяти? Существуют ли эпигенетические импринты в зародышевом пути, которые служат для удержания этого генома в тотипотентном состоянии? Если да, то как эти метки стираются в ходе развития? Добавляются ли в ходе развития новые метки, которые служат для «запирания», фиксации дифференцированных состояний? Мы предвкушаем появление следующего поколения исследований (и исследователей), достаточно смелых, чтобы попытаться ответить на эти вопросы со всей страстностью, свойственной предшествующему поколению исследователей-генетиков и эпигенетиков.
Подводя итог, можно утверждать, что генетические принципы, описанные Менделем управляют, вероятно, огромным большинством характеристик нашего развития и нашего внешнего фенотипа Однако исключения из этого правила могут иногда обнаружить новые принципы и новые механизмы, обеспечивающие наследование, которые ранее недооценивались и в некоторых случаях были малопонятными. Цель этой книги — представить читателю новую оценку основ фенотипической изменчивости, лежащих за пределами изменений в ДНК. Мы надеемся, что системы и концепции, описанные в этой книге, заложат полезный фундамент для будущих поколений студентов и исследователей, таких же, как те, кого увлекли странности эпигенетических явлений.
Литература
Ahmad K. and Henikoff S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9: 1191-1200.
Allfrey V.G., Faulkner R., and Mirsky A.E. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. 51: 786-794.
Almeida R. and Allshire R.C. 2005. RNA silencing and genome regulation. Trends Cell Biol. 15: 251-258.
Aparicio O.M., Billington B.L., and Gottschling D.E. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S cerevisiae. Cell 66: 1279-1287.
Avery O.T., Macleod C.M., and McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79: 137-158.
Avner R and Heard E. 2001. X-chromosome inactivation: Counting, choice and initiation. Nat. Rev. Genet. 2: 59-67.
Bannister A.J. and Kouzarides T. 2005. Reversing histone methylation. Nature 436: 1103-1106.
Bannister A. J., Zegerman R, Partridge J.E, Miska E.A., Thomas J.O., Allshire R.C, and Kouzarides T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124.