Выбрать главу

n = x + 2

n = y + 2

n = z + 2

n = x + y + z

Решить ее можно многими стандартными способами. Из первых трех уравнений видно, что xy = z. Так как nx + 2 и n = Зx (из последнего уравнения), то x + 2 = 3x, откуда x = 1, и мы получаем полный ответ задачи: xy = z = 1.

Поскольку x, y и z в таких задачах принимают, как правило, целые положительные значения (кто станет держать у себя треть кошки или четверть попугая?), то задачу о домашних животных проф. Квиббла можно отнести к так называемым диофантовым задачам. Так принято называть задачи, сводящиеся к решению алгебраических уравнений в целых числах. Иногда диофантовы уравнения не имеют решений или допускают только одно решение. Существуют также диофантовы уравнения, имеющие более одного решения и даже бесконечно много решений. Вот, например, еще одна несколько более трудная диофантова задача о трех видах домашних животных, также сводящаяся к решению системы линейных уравнений.

Корова стоит 10 долларов, свинья — 3 доллара, а овца — 50 центов. Фермер купил по крайней мере 1 корову, 1 свинью и 1 овцу, израсходовав на покупку всего 100 долларов. Сколько и каких животных он купил?

Пусть x — число коров, y — число свиней и z — число овец. Тогда условия задачи можно записать в виде двух уравнений:

10x + 3y + z/2 = 100,

x + y + z = 100.

Умножив правую и левую часть первого уравнения на 2, избавимся от двойки в знаменателе, после чего вычтем из первого уравнения второе. Тем самым мы исключим z и получим «укороченное» уравнение

19x + 5y = 100.

Какие целочисленные значения могут принимать x и y? Один из способов получить ответ на этот вопрос состоит в том, чтобы преобразовать уравнение, оставив в левой части только член с наименьшим коэффициентом при неизвестном: 5y = 100 − 19x. Разделив обе части уравнения на 5, получим у = (100 − 19x)/5. Разделим теперь 100 и 19x на 5, выделив заведомо целую часть и дробный остаток (если он существует):

y = 20 − Зx − 4x/5.

Ясно, что выражение 4x/5 должно принимать целочисленные значения. Следовательно, x должен быть кратен 5. Наименьшее кратное 5 равно 5, что соответствует y = 1 и (если вернуться к любому из двух исходных уравнений) z = 94. При остальных значениях x, кратных 5 (и больших 5), у принимает отрицательные значения. Значит, наша задача допускает единственное решение: фермер купил 5 коров, 1 свинью и 94 овцы.

Варьируя цены на коров, свиней и овец, можно самостоятельно открыть многие премудрости элементарной теории диофантовых уравнений. Предположим, например, что коровы продаются по 4 доллара, свиньи — по 2 доллара и овцы — по ⅓ доллара за голову. Сколько животных купил фермер на 100 долларов, если известно, что он купил по крайней мере 1 корову, 1 свинью и 1 овцу? Эта задача допускает 3 решения. А что можно сказать, если корова стоит 5 долларов, свинья — 2 доллара и овца — 50 центов? Оказывается, что в этом случае решения не существует.

Теория диофантовых уравнений представляет собой обширный раздел теории чисел, имеющий бесчисленные применения во многих областях науки и техники. Одна из знаменитых задач на решение диофантовых уравнений известна под названием великой (или последней) теоремы Ферма. В ней требуется найти при любых целых положительных n > 2 решение в целых числах уравнения xn + yn = zn (при n = 2 эти решения называются пифагоровыми тройками; существует бесконечно много пифагоровых троек, начиная с 3² + 4² = 5²). Великая теорема Ферма — наиболее известная из нерешенных проблем теории чисел. До сих пор никому еще не удалось ни найти хотя бы одно решение уравнения xn + yn = zn в целых числах (при n > 2), ни доказать, что такого решения не существует.

Небольшой переполох в аптеке

Как-то раз в аптеку доставили 10 флаконов лекарства. В каждом флаконе по 1000 пилюль. Не успел провизор мистер Уайт расставить флаконы на полке, как почтальон принес телеграмму.