Каждому из 3 кандидатов на медаль проф. Ах надел красную шляпу.
Проф. Ах. Прошу всех открыть глаза. Пусть каждый из вас, увидев на ком-нибудь красную шляпу, поднимет руку. Первый, кто сможет определить, какого цвета шляпа у него на голове, получит медаль.
Все трое подняли руки. Через несколько минут Джон вскочил с места.
Джон. Ах, я знаю! На мне красная шляпа!
Джон. Если бы на мне была синяя шляпа, то Мери сразу бы догадалась, — что на ней красная шляпа, так как иначе нельзя было бы объяснить, почему Барбара подняла руку.
Джон. Барбара рассуждала бы так же, как Мери, и сразу догадалась бы, что на ней красная шляпа, так как иначе нельзя было бы объяснить, почему Мери подняла руку.
Джон. А поскольку ни Мери, ни Барбара не заявили о том, что знают, какого цвета их шляпы, то их молчание означает одно: красную шляпу они видят не только друг на друге, но и на мне.
Решить эту классическую логическую задачу-головоломку не составляет особого труда, если речь идет о 3 действующих лицах. Но предположим, что их не трое, а четверо, и у каждого на голове красная шляпа.
Как быть в этом случае?
Переход в этой задаче от 3 кандидатов на награду к 4 и последующее обобщение на случай произвольного числа кандидатов познакомит вас с весьма важным методом доказательства, известным под названием «метод математической индукции». Этот метод применим лишь в том случае, когда подлежащие доказательству утверждения можно упорядочить, как ступени лестницы. Вы доказываете, что всякое утверждение истинно, если истинно предыдущее, и проверяете, что первое утверждение истинно. Но коль скоро оно истинно, то истинны и все остальные утверждения: если вы можете ступить на первую ступень, то вам удастся подняться по лестнице сколь угодно высоко (или: если вы ступаете не на первую ступень, то вам удастся подняться или спуститься на любую другую ступень).
Предположим, что у проф. Ах особенно отличились и претендуют на награду 4 студента и что он надел им на головы красные шляпы. Все четверо подняли руки. Предположим, что один из них сумел догадаться, какого цвета шляпа у него на голове, чуть раньше других. Победитель (или победительница) рассуждает так:
— Предположим, что у меня на голове синяя шляпа. Тогда все три моих товарища видят, что она синяя. Значит, каждый из них видит по 2 красные шляпы и жаждет узнать, какого цвета шляпа на голове у него самого. Но именно в такой ситуации находились действующее лица в предыдущей задаче, когда ахову награду оспаривали лишь 3 кандидата. Один из них догадался, что у него на голове красная шляпа.
Но никто из моих соперников не заявляет, что у него на голове красная шляпа, хотя прошло уже достаточно много времени, чтобы каждый мог, не торопясь, тщательно обдумать свои умозаключения. Причина молчания может быть только одна: все они видят, что у меня на голове красная шляпа. Следовательно, мое исходное предположение ложно. Значит, у меня на голове красная шляпа.
Это рассуждение (принесшее своему автору заслуженную награду) допускает обобщение на случай n кандидатов. Если число претендентов на ахову награду равно 5, то самый умный из них увидит перед собой 4 красные шляпы и вскоре поймет, что любой из его соперников может рассуждать так, как рассуждал победитель в состязании 4 кандидатов, и, следовательно, определить цвет своей шляпы. А поскольку все соперники не торопятся заявлять, что у них на головах красные шляпы, то причина подобной сдержанности может быть только одна: все они видят перед собой по 4 красные шляпы. «Значит, — заключил свои рассуждения самый умный из 5 кандидатов, — у меня на голове должна быть красная шляпа». Аналогичные рассуждения применимы в случае любого числа претендентов на ахову награду. Самый умный из n кандидатов всегда может свести задачу к предыдущему случаю, который в свою очередь сводится к предыдущему и т. д., пока задача не сведется к уже решенной задаче о 3 претендентах на ахову награду.
В свази с рассмотрением задачи в общем случае возникает интересный вопрос относительно того, насколько хорошо она определена и не содержит ли она в своих условиях чрезмерный произвол, исключающий возможность однозначного ответа. При каких предположениях задача в общем случае допускает однозначный ответ? Обязательно ли предполагать, что быстрота, с которой соображает каждый из n претендентов на ахову награду, может служить его отличительным признаком, то есть всех претендентов можно упорядочить но быстроте, с которой они думают? Нужно ли предполагать, что с увеличением n возрастает продолжительность времени, в течение которого претендент на награду успевает прийти к заключению о цвете своей шляпы? Предположим, что число претендентов на ахову награду возросло до 100 человек. Верно ли утверждение о том, что по истечении достаточно продолжительной паузы самый умный из них заявит, что у него на голове красная шляпа, затем с некоторым запозданием к аналогичному выводу придет второй по сообразительности из претендентов, затем третий и так далее до тех пор, пока последний тугодум (из лучших студентов проф. Аха) не поймет, что у него на голове красная шляпа?