Выбрать главу

Основными работами, переведенными на русский язык, являются: Анализ ощущений и отношение физического к психическому. М., 1908; Популярно-научные очерки. СПб., 1909; Познание и заблуждение. Очерки по психологии исследования. М„ 1909; Механика. Историко-критический опыт ее развития. М. 1909.

В. Н. Князев

Приведенные ниже фрагменты из работы «Познание и заблуждение» цитируются по изданию:

Альберт Эйнштейн и теория гравитации. Сборник статей. М., 1979.

ПРОСТРАНСТВО И ГЕОМЕТРИЯ С ТОЧКИ ЗРЕНИЯ ЕСТЕСТВОЗНАНИЯ

3. Потребность в глубоком гносеологическом выяснении основ геометрии заставила Римана в середине прошлого столетия поставить вопрос о природе пространства. Еще до этого Гаусс, Лобачевский и оба Бояи обратили внимание на эмпирически-гипотетическое значение известных основных допущений геометрии. Когда Риман рассматривает пространство как частный случай многократно протяженной «величины», он мыслит некоторый геометрический образ, который можно представлять себе наполняющим и все пространство, например координатную систему Декарта. Далее, Риман говорит, что положения геометрии нельзя вывести из общих понятий о величинах, но те свойства, которыми пространство отличается от других мыслимых величин трех измерений, могут быть заимствованы только из опыта: «Подобно всем фактам и эти факты не необходимы, а только эмпирически достоверны; они — гипотезы». Как основные допущения во всякой отрасли естествознания, так и основные допущения геометрии, к которым привел опыт, представляют собой идеализации этого опыта. В своем естественно-научном понимании геометрии Риман стоит на точке зрения своего учителя Гаусса. Гаусс высказал убеждение, «что мы не можем обосновать геометрию вполне a priori . ». «Мы должны смиренно признать, что, хотя число есть только продукт нашего ума, пространство есть реальность и вне нашего ума, которой мы не можем всецело приписывать закона а priori».

4. Каждый исследователь испытал, что познанию объекта, подлежащего исследованию, существенно помогает сравнение его с объектом родственным. Естественно, что и Риман ищет вещи, представляющие аналогию с пространством. Геометрическое пространство он рассматривает как непрерывное многообразие трех измерений, элементами которого надо считать точки, определяемые тремя координатами. Он находит, «что места чувственных предметов и цвета суть, пожалуй, единственные понятия (?), определения которых образуют многообразие многих измерений». К этой аналогии другие ученые прибавили еще новые и развили их далее, но, по моему мнению, не всегда с успехом. (С. 73-74)

20. Таким образом, геометрия есть применение математики к опыту относительно пространства. Подобно математической физике, она становится дедуктивной точной наукой только тем, что объекты опыта изображает схематическими, идеализированными понятиями. Подобно тому как механика может утверждать постоянство масс или сводить взаимодействие тела к одним ускорениям лишь в пределах ошибок наблюдения, так и существование прямых, плоскостей, величины суммы углов треугольника и т.д. возможно утверждать лишь с той же оговоркой. Но так же, как физика иногда оказывается вынужденной заменять свои идеализированные допущения другими, обыкновенно более общими, например постоянное ускорение падающего тела — ускорением, зависящим от расстояния, постоянное количество теплоты — переменным и т.д., так должна делать это и геометрия под давлением фактов или в виде попытки ради научного выяснения. После сказанного перед нами явятся в правильном свете попытки Лежандра, Лобачевского и обоих Боли, из которых младший находился, может быть, под косвенным влиянием Гаусса.