Поставим себе вопрос, действительно ли для изучения понятия числа единственно подходящим методом является генетический метод, а для обоснования геометрии — аксиоматический метод. Представляет также интерес сопоставить друг с другом оба метода и исследовать вопрос о том, какой из этих методов надо будет предпочесть, когда будет идти речь о логическом исследовании основ механики или какой-либо другой физической дисциплины.
Мое мнение таково: несмотря на то, что генетический метод имеет высокое педагогическое и эвристическое значение, все же для окончательного оформления и полного логического обоснования содержания нашего познания предпочтительнее аксиоматический метод. (С. 315-316)
<...> При исследовании основ геометрии можно было обойти некоторые трудности чисто арифметической природы; но при обосновании арифметики ссылка на другую основную дисциплину становится уже недопустимой. Я смогу с большей четкостью выявить те существенные трудности, которые встречаются при обосновании арифметики, если я подвергну краткому критическому разбору взгляды отдельных исследователей.
Л. Кронекер, как известно, усматривал в понятии целого числа коренной фундамент арифметики; он составил себе мнение, что целое число, и притом как общее понятие (значение параметра), должно существовать прямо и непосредственно; это мешало ему познать, что понятие целого числа нуждается в обосновании и может быть обосновано. Поскольку это так, я позволю себе назвать его догматиком: он воспринимает целое число с его существенными свойствами как догму, и затем уже не оглядывается назад.
Г. Гельмгольц представляет точку зрения эмпирика; однако точка зрения чистого опыта опровергается, как мне кажется, указанием на то, что из опыта, т.е. посредством экспериментов, никогда нельзя прийти к заключению о возможности или существовании сколь угодно большого числа, ибо число предметов, являющихся объектом нашего опыта, даже если оно велико, все же не превосходит некоторого конечного предела.
Э.Б. Кристоффеля и всех тех противников Кронекера, которые под влиянием правильного чувства, подсказывавшего им, что без понятия иррационального числа весь анализ оказывается осужденным на бесплодие, пытались спасти существование иррационально го числа путем отыскания «положительных» свойств этого понятия или другими аналогичными способами, — я позволю себе назвать оппортунистами. Однако опровержение точки зрения Кронекера, по моему мнению, ими, по сути дела, не было достигнуто.
Из ученых, которые глубже проникли в существо понятия «целое число», я упомяну следующих:
Ж.Фреге ставит себе задачу обосновать законы арифметики средствами логики, понимая эту последнюю в обычном смысле. Его заслугой является правильное понимание существенных свойств понятия «целое число», а также значение полной индукции.
Но, проводя последовательно свою точку зрения, он среди прочих положений принимает и тот основной закон, согласно которому понятие (множество) определено и может быть непосредственно применено, если только относительно каждого объекта известно, подпадает ли он под это понятие или нет: при этом он не налагает никаких ограничений на понятие «каждый» и, таким образом, оказывается под ударами тех теоретико-множественных парадоксов, которые заключаются, например, в понятии множества всех множеств и которые показывают, как мне кажется, что толкования и средства исследования логики, понятые в обычном смысле, не в состоянии удовлетворить тем строгим требованиям, которые ставит теория множеств. Устранение подобных противоречий и объяснение этих парадоксов следует с самого начала рассматривать как главную цель при исследованиях, касающихся понятия числа.