Выбрать главу

В ванну с раствором необходимого для покрытия вещества опускают концы электрической цепи. Эти концы называют электродами. К одному из них крепят наше изделие, например, статую или металлическую деталь. И пропускают через раствор электрический ток. Заряженные частички — ионы, скажем, хрома или никеля, устремляются к изделию и начнут со всех сторон «облеплять» его. Электрические заряды пойдут дальше по цепи или, напротив, придут и «высадятся» на ионах. Но сама массивная частичка металла останется на месте, на поверхности изделия. Так можно, слой за слоем, наращивать толщину наносимого покрытия — хромировать или никелировать.

Оказалось, это явление подчиняется строгим законам. Они были открыты знаменитым английским ученым Майклом Фарадеем в начале тридцатых годов прошлого века. Зная эти законы, люди научились защищать металлы от коррозии, наносить рисунки на объемные детали, снимать слепки с различных фигур. Очень важное применение электролиза — получение чистых металлов из их растворов или расплавов, а также многих химических соединений, которые иным путем изготавливать не удается.

Посмотрите вокруг себя. Не скрывается ли под тонкой оболочкой многих приборов и украшений какой-нибудь простой и дешевый материал?

Откуда ток берется в пустоте?

Возможны ли частицы без заряда? Даже если это мельчайшие частички вещества — атомы или молекулы — они вполне могут быть незаряженными, нейтральными. А может быть заряд без частички? Оказывается, нет. Нигде мы не обнаружим заряда, «гуляющего», как киплинговская кошка, самого по себе. Всегда он к чему-то «приконопачен» — к электрону, к протону или к их комбинациям — ионам.

Подобный вопрос пришлось обсуждать, когда возникла задача пропустить ток через… вакуум. Встала такая задача с развитием радиотехники. Может быть, вам приходилось заглядывать в «нутро» старых радиоприемников или телевизоров. Вы замечали, сколько там разнообразных ламп с хитроумной начинкой? А ведь из них откачан воздух, и все электрические процессы протекают в пустоте. Сегодня ламповые приборы из-за большого потребления энергии и не очень высокой надежности вытеснены более эффективными, полупроводниковыми. Но вот одну большую лампу вы и по сей день встретите как в телевизорах, так и в дисплеях. Это — кинескоп.

Итак, поскольку внутри этих малых и гигантских ламп нет, можно сказать, ничего, то что же будет переносить там электрический заряд? Так как он «отдельно» от частичек не существует, то ответ напрашивается сам собой. В откачанное от воздуха пространство необходимо «впрыснуть» заряженные частички. Это и делают, нагревая, например, металлы, из которых как бы испаряются электроны.

Вот теперь есть чем погонять «электрическому ветру». Подавая, скажем, на кинескоп высокое напряжение, можно так манипулировать электронами, что они будут послушно выполнять любые приказы. Да, собственно, вы наблюдаете за этим каждый день, смотря телевизор. Ведь изображение на его экране — не что иное, как результат «бомбардировки» электронным пучком светящегося от его ударов вещества. А уж когда начинается электронная игра на дисплее или вам демонстрируют чудеса компьютерной графики, можно понять, насколько велики возможности электронного луча, несущегося в вакууме.

Что роднит молнию и сварочный аппарат?

Отчего светятся разными цветами рекламные трубки? Почему горят люминисцентные лампы, или, как их еще называют, лампы дневного света? Почему сверкает молния? Почему горит электрическая дуга, скажем, при сварке? Оказывается, все эти, на первый взгляд, различные примеры свечения объединяет одно — это электрический разряд в газах.

Газы — неплохие изоляторы, так как в «чистом» виде — это нейтральные молекулы. Поэтому, чтобы через газ прошел электрический ток, заряды в нем каким-то образом надо создать. Ухищрений для этого придумали много. Можно газ облучать, подогревать, «впрыскивать» в него заряженные частички. Но самый важный процесс при разряде — когда электроны, подгоняемые напряжением, смогут так разогнаться, что при ударе о нейтральную молекулу газа выбьют из нее новый электрон.

Что останется тогда от молекулы? По массе она почти ничего не потеряет — электрон слишком легок. А вот если от ее нулевого заряда электрон, оторвавшись, «утащит» с собой отрицательный заряд? Конечно, вы догадались — молекула газа зарядится положительно — и станет ионом.

Вот как газы-диэлектрики, выдерживающие высокое напряжение, в какой-то момент становятся прекрасными проводниками. При протекании по ним электрического тока молекулы газов из-за электронной бомбардировки оказываются способными излучать свет. Это их качество активно используется сейчас в самых разных отраслях науки, техники и быта. Отметим лишь одно изобретение, сыгравшее в дальнейшем огромную роль.