Благодаря такому методу удалось как бы воочию представить себе сложные конфигурации электрических и магнитных полей. Например, в приборах и экспериментальных установках физиков, вокруг Солнца и звезд, в ближайших окрестностях и вдалеке от планет.
Поле… С катушек сошло
Возможность «нарисовать» магнитное поле позволяет натолкнуться на удивительный факт. Если длинную проволоку скрутить в виде спирали и пропустить по ней постоянный электрический ток, то вокруг такой «катушки» обнаруживается магнитное поле.
Поразительным же оказывается то, что это поле снаружи катушки выглядит точно так же, как и поле постоянного длинного магнита. Продемонстрировать это могут насыпанные вокруг обоих приборов железные опилки.
Поразмышляем над результатами опыта. Во-первых, электрический ток породил вокруг себя магнитное поле. Теперь мы можем связывать появление поля с движущимися заряженными частичками. Во-вторых, вид этого поля абсолютно совпал с полем магнитных тел, известных за тысячелетия до того, как человек стал собирать электрические цепи и пропускать по ним токи. Значит, катушка с током — не что иное, как электромагнит.
Ханс Кристиан Эрстед (1777–1851) — датский физик. Обнаружил действие электрического тока на магнитную стрелку. Это открытие привело к появлению новой области физики — электромагнетизму. Построил первый термоэлемент. Занимался исследованиями свойств жидкостей и газов, акустическими опытами. Одним из первых высказал мысль о свете как об электромагнитном явлении.
Последствия наших размышлений, которые мы здесь провели вслед за известными учеными, поистине грандиозны. Именно они привели к той революции, что произошла в прошлом веке после блестящих открытий в области электромагнетизма. А началось все с небольшой брошюрки, написанной известным датским ученым Эрстедом. В ней он впервые сообщил о действии на магнитную стрелку тока, текущего по проволоке.
Без постоянных магнитов
Попробуйте провести такой опыт. Сделайте из толстой проволоки кольцо, а к его незамкнутым концам прикрутите длинные тонкие проводки в изолирующей оболочке. Эти проводки употребляют в телефонных кабелях. Если теперь свободные концы проводка подсоединить к полюсам электрической батареи, а кольцо подвесить за них так, чтобы оно могло вращаться, то мы заметим следующее. Поднося к кольцу, по которому течет электрический ток, магнит или стрелку компаса, мы заставим кольцо крутиться, а стрелку — поворачиваться. Ну прямо, как действие друг на друга двух обычных магнитов.
Немудрено, ведь теперь колечко — тоже магнит, хотя и электрический. С его помощью, как магнитной стрелкой, можно обнаруживать и исследовать другие поля. Или наблюдать его взаимодействие с такими же колечками и катушками с током. То есть при изучении магнетизма можно вообще обойтись без постоянных магнитов, а работать только с токами.
Знаменитый французский физик Андре Ампер изучал взаимодействие электрических токов и вывел для него свой закон. Он также установил, что параллельные проводники с токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются.
Появление магнитного поля вокруг проводников с током показалось Амперу настолько естественным, что он задумался о подобной же природе магнетизма у постоянных магнитов. Его гипотеза о том, что магнетизм, скажем, железного стержня порождается внутри него крохотными вихревыми токами, блестяще подтвердилась спустя много десятков лет.
Когда запищала «морзянка»?
Давно мечтал человек, чтобы какое-нибудь важное его сообщение было как можно быстрее доставлено адресату. Когда-то эту роль выполняли пешие гонцы, затем письменные послания передавали всадники. Появилась почта — целая система разветвленной связи, где скорость передачи сообщений определялась возможностями транспорта. Но мысль об ускорении этой связи не давала покоя.