При произвольном направлении рамки по отношению к силовым линиям магнитный поток, проходящий через контур, равен
Ф = Фмакс∙sin φ
φ — угол между плоскостью витка и направлением поля.
Этот угол меняется со временем по закону φ = 2π∙(t/T).
Закон электромагнитной индукции позволяет вычислить ЭДС индукции. Запишем выражения магнитных потоков для двух мгновений, отличающихся на очень малый промежуток времени τ:
Разность этих выражений:
Так как τ очень мало, то справедливы следующие приближенные равенства:
ЭДС индукции равна этой разности, отнесенной ко времени. Значит,
Мы доказали, что ЭДС индукции выражается синусоидой, сдвинутой по отношению к синусоиде магнитного потока на 90 градусов. Что касается максимального значения ЭДС индукции — ее амплитуды, то оно пропорционально произведению амплитуды магнитного потока на частоту вращения рамки.
Закон для силы тока получится, если разделить ЭДС индукции на сопротивление цепи. Но мы сделаем грубую ошибку, если приравняем сопротивление переменному току, которое стоит в знаменателе выражения
Iперем = инд/Rперем
омическому сопротивлению — той величине, с которой мы имели дело до сих пор: Оказывается, что Rперем определяется не только омическим сопротивлением, но зависит еще от двух параметров цепи: ее индуктивности и включенных в цепь емкостей.
То, что закон Ома усложняется, когда мы переходим от постоянного тока к переменному, показывает следующий простой опыт. На рис. 4.3 изображена цепь тока, проходящего через электрическую лампочку и катушку, в которую можно вставлять железный сердечник. Сначала подключим лампочку к источнику постоянного тока. Будем вдвигать железный, сердечник в катушку и выдвигать его. Никакого эффекта! Сопротивление цепи не меняется, значит и сила тока остается неизменной.
Но повторим этот же опыт для случая, когда цепь подключена к переменному току. Эффектный результат, не правда ли? Теперь лампочка горит ярко, если сердечник не вставлен в катушку, и тускло, если вы вдвинули железо в катушку.
Итак, при неизменном внешнем напряжении, при неизменном омическом сопротивлении (зависящем лишь от материала, длины и сечения проводов) сила тока меняется в зависимости от положения железного сердечника в катушке.
Что это значит?
Мы вспоминаем, что железный сердечник резко увеличивает (в тысячи раз) магнитный поток, проходящий через катушку. В случае переменной ЭДС магнитный поток в катушке все время меняется. Но если без железного сердечника он менялся от нуля до какой-то условной единицы, то при наличии сердечника он будет меняться от нуля до нескольких тысяч единиц.
При изменении магнитного потока силовые линии будут пересекать витки «своей» катушки. В катушке будет возникать ток самоиндукции. Согласно правилу Ленца этот ток будет направлен так, чтобы ослабить эффект, его вызвавший: внешняя ЭДС встречает особую помеху, которой не существовало тогда, когда ток был постоянным. Иными словами, у переменного тока имеется дополнительное сопротивление, обязанное тому, что магнитное поле, пересекая привода своей цепи, создает особую ЭДС, называемую ЭДС самоиндукции, которая ослабляет среднюю силу тока. Это дополнительное сопротивление называется индуктивным.
Опыт говорит (и это обстоятельство, без сомнения, покажется читателю вполне естественным), что магнитный поток, пронизывающий катушку (или, говоря более общо, пронизывающий весь контур тока), пропорционален силе тока: Ф = L∙I. Что же касается коэффициента пропорциональности L, который называется индуктивностью, то он зависит от геометрии проводящего контура и от того, какие сердечники он охватывает. Как очевидно из формулы, численное значение индуктивности равно магнитному потоку при силе тока в один ампер. Единица измерения L — генри (1 Г = = 1 Ом∙с).
Можно теоретически вывести и подтвердись на опыте, что индуктивное сопротивление RL выражается формулой:
RL = 2π∙ν∙L.
Если омическое сопротивление (с которым мы знакомы) и емкостное сопротивление (с которым познакомимся ниже) малы, то сила тока в цепи равна;
I = /RL
Для того чтобы судить о том, что «мало», а что «велико», прикинем значение индуктивного сопротивления для частоты городского тока и индуктивности 0,1 Г. Получим примерно 30 Ом.