Для звуковых волн стенки потолка — гладкие. И если потолок сводчатый, то в помещении можно наблюдать особый случай отражения звука: поскольку свод по форме близок к эллипсоидальной поверхности, то звук, вышедший из. одного ее фокуса, придет в другой фокус. Это свойство сводчатых поверхностей знали еще в древности. В средние века, во времена инквизиции, им пользовались для подслушивания разговоров. Двое людей, тихим голосом поведывающие друг другу свои мысли, и не подозревали, что их подслушивает дремлющий монах, который сидит в другом углу кабачка (рис. 5.2).
И корпускулярная, и волновая модели одинаково пригодны объяснить это явление. Но явления такого типа, как соударения биллиардных шаров, волновая модель объяснить не в состоянии.
С другой стороны, имеется несколько важнейших фактов, с которыми никак не сможет справиться корпускулярная модель.
Прежде всего это интерференция, т. е. сложение, при котором сумма может оказаться меньше слагаемых, а то и вовсе равной нулю. Если две волны приходят в одну точку и складываются, то кардинальную роль играет разность их фаз в этой точке. Если горб одной волны приходится на горб другой волны, то волны сложатся. Но если горб одной волны придется на впадину другой и если при этом амплитуды волн одинаковы, то сложение приведет… к нулю: волны, пришедшие в одну точку, погасят друг друга. При наложении одного волнового поля на другое в одних местах произойдет их арифметическое сложение, а в других вычитание. В этом и состоит явление интерференции. Вот первое явление, которое абсолютно невозможно трактовать на языке потоков частиц. Если излучение ведет себя как поток горошинок, то наложившиеся поля должны были бы всегда и везде усиливать друг друга.
Второе важное явление — это дифракция, т. е. огибание препятствий. Поток частиц не может себя так вести, а волна должна поступить именно таким образом. В школе явление дифракции демонстрируют, возбуждая волны в ванночке, заполненной водой. Ставят на пути волны перегородку с отверстием, и загибание за угол становится видным невооруженному глазу. Причина такого поведения совершенно естественна. Ведь в плоскости отверстия частицы воды пришли в состояние колебания. Каждая точка, лежащая в плоскости отверстия, создает волну, на тех же правах, что и первичный источник излучения. Ничто не мешает этой вторичной волне «завернуть за угол».
Явления интерференции и дифракции демонстрируются без труда, если соблюдено условие, о котором уже было сказано: длина волны должна быть больше или по крайней мере соизмерима и препятствиями или отверстиями. Мы уточним это условие и поговорим подробнее о дифракции и интерференции в следующей книге.
А сейчас остановимся на изменении частоты волны, воспринимаемой наблюдателем при движении источника излучения. То, что такое явление есть необходимое следствие волновой модели, было показано Христианом Допплером (1803–1853) еще на заре теоретической физики.
Выведем формулу Допплера, которая пригодится нам в дальнейшем. Для образности положим, что автомашина приближается к движущемуся оркестру. Число сгущений воздуха, доходящих за единицу времени до уха шофера, будет больше, Чем если бы машина стояла на месте, в отношении (с + u)/u, где с — скорость распространения волны, а u — относительная скорость источника и приемника волны. Следовательно,
Значит, воспринимаемая частота v' растет при сближении машины и оркестра (тон звука выше, u > 0) и падает при удалении (тон звука ниже, u < 0). Забегая вперед, мы можем сказать, что для световой волны этот вывод звучит так: при удалении источника происходит «красное смещение». Важность этого вывода читатель оценит тогда, когда мы поведем речь о наблюдениях спектров далеких звезд.
С давних времен и вплоть до двадцатых годов нашего века мыслители зачастую спорили о том, имеет ли та или иная передача энергии волновую или корпускулярную природу. Опыт показал, что любое излучение имеет два аспекта. И только сочетание этих двух аспектов правильно отображает действительность. Этот факт теория возвела в ранг основного закона природы. Волновая механика, квантовая механика, квантовая физика — это эквивалентные названия современной теории поведения полей и частиц.