Выбрать главу

Рассмотрим возникновение электромагнитного излучения на языке теории Максвелла. Система зарядов колеблемся с какой-то частотой. В такт этим колебаниям меняется электромагнитное поле. Частота колебаний поля v, поделенная на скорость распространения 300 000 км/с, дает нам значение длины волны излучения.

Если перейти на язык квантовой физики, то это же явление будет описано следующим образом. Имеется система зарядов, для которой характерна система дискретных уровней энергии. По какой-то причине эта система пришла в возбужденное состояние, но в этом состоянии прожила недолго и перешла на более низкий уровень. Выделившаяся при этом энергия E2E1 = hv излучается в виде частицы, носящей название фотона. С постоянной h мы уже знакомы (стр. 100). Это та же постоянная Планка.

Если уровни энергии системы расположены очень близко друг к другу, то фотон обладает малой энергией, малой частотой и, следовательно, большой длиной волны. В этом случае квантовый корпускулярный аспект электромагнитного поля мало заметен и обнаруживает себя лишь в явлениях поглощения, связанных с очень малыми изменениями энергии электронов или атомных ядер (магнитный резонанс). Столкновений фотона с частицами, подобных удару биллиардных шаров, в случае волн большой длины наблюдать не удается.

Расскажем вкратце о тех фактах, которые, так сказать, приперли физиков к стене и заставили согласиться с тем, что волновая теория, (в которую уже много десятков лет верили, как в полную и исчерпывающую истину) не в состоянии объяснить все факты, касающиеся электромагнитных полей. Фактов таких очень много, но пока что мы ограничимся явлением, которое носит название фотоэлектрического эффекта. После того как читатель согласится с тем, что без корпускулярного аспекта картина электромагнитного поля не может быть создана, мы обратимся к замечательным опытам Герца, из которых выросла вся радиотехника, и покажем, каким образом волновой аспект электромагнитного поля был обрисован не только в общих чертах, но и в деталях.

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

Звучное и красивое название «фотон» появилось несколько позже, чем произведение постоянной Планка h на частоту электромагнитной волны v. Как мы сказали выше, переход системы из одного энергетического состояния в другое сопровождается поглощением или излучением порции энергии hv. К такому заключению на рубеже нашего и предыдущего столетий пришел замечательный немецкий физик Макс Планк. Он показал, что только таким способом удается истолковать излучение раскаленных тел. Рассуждения относились к электромагнитным волнам, получаемым нерадиотехническим способом. В то время еще не было доказано и не было всеми признано, что то, что справедливо для света, верно и для радиоволн, хотя законы Максвелла указывали со всей определенностью, что между радиоволнами и другими электромагнитными волнами, в том числе светом, нет никакого принципиального различия. Понимание и экспериментальные доказательства универсальной справедливости утверждения Планка пришли позже.

В работе Планка шла речь об излучении света порциями, т. е. квантами. Однако в ней не отмечалось, что квантовый характер излучения делает неизбежным введение в рассмотрение корпускулярного аспекта электромагнитного поля. Да, говорилось в то время, поле излучается порциями, но порция есть некоторый цуг волн.

Важнейший шаг, т. е. признание того, что излученная порция энергии hv есть энергия частицы, которую сразу окрестили фотоном, был сделан Эйнштейном, показавшим, что только с помощью корпускулярных представлений можно объяснить явление фотоэлектрического эффекта, т. е. выбивание электронов из твердых тел под действием света.

На рис. 5.4 изображена схема, с помощью которой в конце прошлого века началось детальное изучение явления, названного внешним фотоэффектом.

Впервые на то, что свет как-то влияет на электроды вакуумной трубки, указал, видимо, Генрих Герц в 1888 г. Работая одновременно, Сванте Аррениус (1859–1927), Вильгельм Гальвакс (1859–1922), Аугусто Риги (1850–1920) и прекрасный русский физик Александр Григорьевич Столетов (1839–1896) показали, что освещение катода приводит к возникновению тока. Если к показанной на рисунке трубке (ее называют фотоэлементом) напряжение не приложено, то лишь незначительная часть электронов, выбитых светом из катода, доберется до противоположного электрода. Слабое подгоняющее напряжение (минус на фотокатоде) увеличит ток. В конце концов ток достигнет насыщения: все электроны (число которых приданной температуре вполне определенно) достигают анода.